Skip to main content
Log in

Structural and phase transformations during copper and iron mechanical alloying in liquid medium studied by Mössbauer spectroscopy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy and X-ray diffraction have been used to study the kinetics of structural and phase transformations in Cu + 2 at% 57Fe during mechanical activation in liquid media (heptane, distilled water) and subsequent heat treatment (600 and 700 °С). The initial stages of mechanical alloying are associated with the transition of components to the nanostructural state. Iron atom groups form near the grain boundaries, and isolated iron atoms penetrate from the boundaries into the grains. Oxidation of groups of iron atoms that form highly dispersed phases of ternary oxide and magnetite occur in the initial stages of mechanical alloying of Cu + 2 at% 57Fe in water. The formation of the solid solution in the form of isolated iron atoms in the lattice of copper proceeds, regardless of the milling media used. Samples prepared in heptane contain carbon and oxygen, and upon heat treatment, carbide and oxide phases are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sumiyama, Y. Yoshitake, and Y. Nakamura, Acta Metall. 33, 1785 (1985).

    Article  Google Scholar 

  2. G. L. Whittle, S. J. Campbel, and A. A. Calka, Hyperfine Interact. 28, 993 (1986).

    Article  Google Scholar 

  3. L. B. Long and B. Fultz, Acta Mater. 46, 2937 (1998).

    Article  Google Scholar 

  4. K. Sumiyama, T. Yoshitake, and Y. Nakamura, Trans. Jap. Inst. Met. 26, 217 (1985).

    Article  Google Scholar 

  5. S. J. Campbell and P. E. Clark, J. Phys. F. Met. Phys. 4, 1073 (1974).

    Article  Google Scholar 

  6. R. Jain and G. Longworth, J. Phys. F. Met. Phys. 8, 364 (1978).

    Google Scholar 

  7. H. C. Verma, Indian J. Pure. Ap. Phy. 45, 851 (2006).

    Google Scholar 

  8. P. E. Clark, J. M. Cadogan, M. J. Yazxhi, and S. J. Campbell, J. Phys. F. Met. Phys. 9, 379 (1979).

    Article  Google Scholar 

  9. I. Spirov, T. Tomov, and S. Asenov, J. Phys-Condens Mat. 6, 2335 (1994).

    Article  Google Scholar 

  10. T. J. Panek and J. Kansy, J. Phys. F. Met. Phys. 12, 269 (1982).

    Article  Google Scholar 

  11. J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, J. Appl. Phys. 73, 2794 (1993).

    Article  Google Scholar 

  12. A. R. Yavari, P. J. Desre, and T. Benameur, Phys. Rev. Lett. 68, 2235 (1992).

    Article  Google Scholar 

  13. B. Majumdar, Raja M. Manivel, A. Narayanasamy, and K. Chattopadhyay, J. Alloy. Compd. 248, 192 (1997).

    Article  Google Scholar 

  14. N. Wanderka, U. Czubayko, V. Naundorf, V. A. Ivchenko, A. Ye. Yermakov, M. A. Uimin, and H. Wollenberger, Ultramicroscopy. 89, 189 (2001).

    Article  Google Scholar 

  15. J. Z. Jiang, U. Gonser, C. Gente, and R. Bormann, Appl. Phys. Lett. 63, 2768 (1993).

    Article  Google Scholar 

  16. L. M. Socolovsky, F. H. Sanchez, and P. H. Shingu, Hyperfine Interact. 133, 47 (2001).

    Article  Google Scholar 

  17. K. Tokumitsu, Mater. Sci. Forum. 269-272, 467 (1998).

    Article  Google Scholar 

  18. Sh. Wei, H. Oyanagi, C. Wen, Y. Yang, and W. Liu, J. Phys.: Condens. Matter. 9, 11077 (1997).

    Google Scholar 

  19. Y. R. Uhm, W. W. Kim, and C. K. Rhee, Phys. Status Solidi A. 201, 1802 (2004).

    Article  Google Scholar 

  20. I. A. Al-Omari, Phys. Status Solidi C. 1, 1805 (2004).

    Article  Google Scholar 

  21. M. Eilon, J. Ding, and R. Street, J. Phys-Condens. Mat. 7, 4921 (1995).

    Article  Google Scholar 

  22. G. Principi, T. Spataru, R. Gupta, S. Enzo, V. Kuncser, and G. Filoti, J. Alloy. Compd. 326, 188 (2001).

    Article  Google Scholar 

  23. P. P. Macri, P. Rose, D. E. Banda, N. Cowlam, G. Principi, and S. Enzo, Mater. Sci. Forum. 179-181, 249 (1995).

    Article  Google Scholar 

  24. J.-C. Crivello, T. Nobuki, and T. Kuji, Mater. Trans. 49, 527 (2008).

    Article  Google Scholar 

  25. F. M. Lucas, B. Trindade, B. F. O. Costa, and G. Le Caër, Key Eng. Mater. 230-232, 631 (2002).

    Article  Google Scholar 

  26. V. G. Harris, K. M. Kemner, B. N. Das, N. C. Koon, and A. E. Ehrlich, Phys. Rev. B 54, 6929 (1996).

    Article  Google Scholar 

  27. J. Z. Jiang, Q. A. Pankhurst, C. E. Johnson, C. Gente, and R. Bormann, J. Phys-Condens. Mat. 6, L227 (1994).

    Article  Google Scholar 

  28. J. Eckert, J. C. Holzer, and W. L. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  Google Scholar 

  29. P. P. Macri, S. Enzo, N. Cowlam, R. Frattini, G. Principi, and W. X. Hu, Phil. Mag. B 71, 249 (1995).

    Article  Google Scholar 

  30. W. Keune, J. Lauer, and D. L. Williamson, J. De Physique. 35, C6–473 (1974).

    Google Scholar 

  31. P. Crespo, N. Menéndez, J. D. Tornero, M. J. Barro, J. M. Barandiarán, A. García-Escorial, and A. Hernando, Acta Mater. 46, 4161 (1998).

    Article  Google Scholar 

  32. P. P. Macri, P. Rose, R. Frattini, S. Enzo, G. Principi, W. X. Hu, N. Cowlam, J. Appl. Phys. 76, 4061 (1994).

    Article  Google Scholar 

  33. J. Ding, M. Eilon, R. Street, T. St. Pierre, P. Smith, and P. G. McCormick, J. Magn. Magn. Mater. 144, 471 (1995).

    Article  Google Scholar 

  34. R. A. Dunlap, D. A. Eelman, and G. R. Mackay, J. Mater. Sci. Lett. 17, 437 (1998).

    Article  Google Scholar 

  35. B. Window, J. Phys. C: Metal Phys. Suppl. 3, S323 (1970).

    Article  Google Scholar 

  36. S. J. Campbell, P. E. Clark, and P. R. Liddell, J. Phys. F. Met. Phys. 2, L114 (1972).

    Article  Google Scholar 

  37. J. P. Schiffer, P. N. Parks, and J. Heberle, Phys. Rev. B 133A, A1553 (1964).

    Article  Google Scholar 

  38. J. Ebert, M. Ghafari, B. Stahl, H. Hahn, M. D. Martins, and W. A. A. Macedo, Phys. Status Solidi A 189, 677 (2002).

    Article  Google Scholar 

  39. G. Longworth and R. Jain, J. Phys. F. Met. Phys. 8, 351 (1978).

    Article  Google Scholar 

  40. T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, Mechanochemical Synthesis in Metallic Systems, pp.1–311, Parallel, Novosibirsk (2008).

    Google Scholar 

  41. I. P. Suzdalev, Yu. V. Maksimov, V. K. Imshennik, S. V. Novichikhin, V. V. Matveev, E. A. Gulilin, A. E. Chekanova, O. S. Petrova, and Y. D. Tretyakov, Nanotechnologies in Russia 2, 73 (2007).

    Google Scholar 

  42. P. Ayyub, M. Multani, M. Barma, V. R. Palkar, and R. Vijayaraghavan, J. Phys. C Solid State. 21, 2229 (1988).

    Article  Google Scholar 

  43. G. M. da Costa, E. De Grave, P. M. A. De Bakker, and R. E. Vandenberghe, J. Sol. St. Chem. 113, 405 (1994).

    Article  Google Scholar 

  44. X. Cao, R. Prozorov, Yu. Koltypin, G. Kataby, I. Felner, and A. Gedanken, J. Mater. Res. 12, 402 (1997).

    Article  Google Scholar 

  45. S. Kumar, S. Layek, B. Pandey, and H.C. Verma, Int. J. Eng. Sci. Techn. 2, 66 (2010).

    Google Scholar 

  46. S. Music, G. P. Santana, G. Šmit, and V. K. Garg, Croat. Chem. Acta. 72, 87 (1999).

    Google Scholar 

  47. D. Yokoyama, K. Namiki, H. Fukasawa, J. Miyazaki, K. Nomura, and Y. Yamada, J. Radioanal. Nucl. Chem. 272, 631 (2007).

    Article  Google Scholar 

  48. B. Davida; O. Schneeweiss, E. Šantavá, and I. Morjan, Acta Phys. Pol. A 118, 766 (2010).

    Article  Google Scholar 

  49. T. Yoshikawa, Y. Kanke, H. Yanagihara, E. Kita, Y. Tsunoda, K. Siratori, and K. Kohn, Hyperfine Interact. 205, 135 (2012).

    Article  Google Scholar 

  50. I. V. Murin, V. M. Smirnov, G. P. Voronkov, V. G. Semenov, V. G. Povarov, and B. M. Sinel’nikov, Sol. St. Ionics. 133, 203 (2000).

    Article  Google Scholar 

  51. L. Herojit Singh, R. Govindaraj, P. A. Manoj Kumar, G. Amarendra, and C. S. Sundar, Aip. Conf. Proc. 1349, 423 (2010).

    Google Scholar 

  52. L. Herojit Singh, R. Govindaraj, G. Amarendra, and C. S. Sundar, Aip. Conf. Proc. 1447, 445 (2011).

    Google Scholar 

  53. E. S. Vasil’eva, O. V. Tolochko, V. G. Semenov, V. S. Volodin, and D. Kim, Techn. Phys. Lett. 33, 40 (2007).

    Article  Google Scholar 

  54. H. Topsøe, J. Dumesic, and M. Boudart, J. De Phys. Colloq. 35, C6–411 (1974).

    Article  Google Scholar 

  55. J. S. Jiang, X. L. Yang, L. Gao, and J. K. Guo, Mater. Sci. Eng. A 392, 179 (2005).

    Article  Google Scholar 

  56. S. J. Stewart, R. A. Borzi, and R. C. Mercader, J. Magn. Magn. Mater. 192, 77 (1992).

    Article  Google Scholar 

  57. S. J. Stewart, G. F. Goya, G. Punte, and R. C. Mercader, J. Phys. Chem. Sol. 58, 73 (1997).

    Article  Google Scholar 

  58. M. K. Roy and H. C. Verma, J. Magn. Magn. Mater. 270, 186 (2004).

    Article  Google Scholar 

  59. G. F. Goya, H. R. Rechenberg, and J. Z. Jiang, J. Appl. Phys. 84, 1101 (1998).

    Article  Google Scholar 

  60. N. S. Gajbhiye, G. Balaji, S. Bhattacharyya, and M. Ghafari, Hyperfine Interact. 156/157, 57 (2004).

    Article  Google Scholar 

  61. G. F. Goya and H. R. Rechenberg, J. Phys-Condens. Mat. 10, 11829 (1998).

    Article  Google Scholar 

  62. W. H. Gries, B. D. Sawicka, and J. A. Sawicki, Nucl. Instrum. Meth. B. 18, 291 (1987).

    Article  Google Scholar 

  63. V. V. Gorsky, A. N. Gripachevsky, V. V. Nemoshkalenko, O. N. Razumov, and A. N. Tymoshevsky, Phys. Met. 9, 73 (1987).

    Google Scholar 

  64. S. B. Ogale, P. G. Bilurkar, S. Joshi, and G. Marest, Phys. Rev. B 50, 9743 (1994).

    Article  Google Scholar 

  65. D. P. Joseph, T. P. David, S. P. Raja, and C. Venkateswaran, Mater. Charact. 59, 1137 (2008).

    Article  Google Scholar 

  66. H. L. Smith, B. C. Hornbuckle, L. Mauger, B. Fu, S. J. Tracy, G. B. Thompson, M. S. Lucas, Y. Xiao, M. Y. Hu, J. Zhao, E. Ercan Alp, and B. Fultz, Acta Mater. 61, 7466 (2013).

    Article  Google Scholar 

  67. R. Janot and D. Guerard, Progr. Mater. Sci. 50, 1 (2005).

    Article  Google Scholar 

  68. S. F. Lomayeva, Doctorate Thesis, pp.1–334, Physical-Technical Inst. Ural Branch of RAS, Izhevsk (2007).

    Google Scholar 

  69. S. F. Lomayeva, A. N. Maratkanova, O. M. Nemtsova, A. A. Chulkina, and E. P. Yelsukov, Nucl. Instrum. Methods Phys. Res. Sect A 575, 99 (2007).

    Article  Google Scholar 

  70. M. A. Eryomina, S. F. Lomayeva, E. P. Yelsukov, A. L. Ul’yanov, and A. A. Chulkina, Met. Mater. Int. 20, 1123 (2014).

    Article  Google Scholar 

  71. G. D. Dorofeev, D. N. Streletskii, I. V. Povstugar, V. Protasov and E. P. Elsukov, Colloid J. 74, 675 (2012).

    Article  Google Scholar 

  72. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Y. A. Babanov, Phys. Status Solidi B 160, 625 (1990).

    Article  Google Scholar 

  73. K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara, and P. H. Shingu, Z. Metallkd. 83, 132 (1992).

    Google Scholar 

  74. M. Lesoille and P. M. Gielen, Metallurgical Trans. 3, 2681 (1972).

    Article  Google Scholar 

  75. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater. 45, 225 (1997).

    Article  Google Scholar 

  76. K. Oda, H. Fujimura, and H. Ino, J. Phys-Condens. Mat. 6, 679 (1994).

    Article  Google Scholar 

  77. X. Dong, Zh. Zhang, and X. Zhao, J. Mater. Sci. Technol. 14, 441 (1998).

    Google Scholar 

  78. G. Le Caër and P. Matteazzi, Hyperfine Interact. 66, 309 (1991).

    Article  Google Scholar 

  79. J. A. Sawicki and B. D. Sawicka, Nucl. Instr. Methods. 194, 465 (1982).

    Article  Google Scholar 

  80. F. Hornstein and M. Ron, J. De Phys. Colloq. 35, C6–497 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Anatol’evna Eryomina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eryomina, M.A., Lomayeva, S.F., Ul’yanov, A.L. et al. Structural and phase transformations during copper and iron mechanical alloying in liquid medium studied by Mössbauer spectroscopy. Met. Mater. Int. 22, 163–170 (2016). https://doi.org/10.1007/s12540-016-5459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5459-1

Keywords

Navigation