Skip to main content
Log in

Cementite formation in copper matrix under mechanical activation using carbon media

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We studied the structure and phase transformations of nanocrystalline alloys prepared with mechanical alloying (MA) and annealing by milling copper and iron powders with graphite and xylene. At an early stage of MA, a supersaturated solid solution of iron is formed in copper, regardless of the carbon-precursor type used. In the case of graphite, the formation of iron carbides occurs at a later stage of milling. MA in xylene results in an insignificant amount of carbon phases. Heat treatment leads to the formation of nanocrystalline copper composites with 30 vol.% Fe3C in the two cases of using graphite and xylene. The grain size (30 nm) of the annealed (800 °C) Cu + Fe3C composite produced by MA with xylene is five times less than that of the annealed sample produced with graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Huang, Y. K. Wu, and H. Q. Ye, Acta Mater. 44, 1211 (1996).

    Article  Google Scholar 

  2. D. Setman, M. Kerber, H. Bahmanpour, J. Horky, R. O. Scattergood, C. C. Koch, and M. J. Zehetbauer, Mech. Mater. 67, 59 (2013).

    Article  Google Scholar 

  3. J. Schiøtz, F. D. Di Tolla, and K. W. Jacobsen, Nature. 391, 561 (1998).

    Article  Google Scholar 

  4. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).

    Article  Google Scholar 

  5. X. Z. Liao, Y. H. Zhao, S. G. Srinivasan, and Y. T. Zhu, Appl. Phys. Lett. 84, 592 (2004).

    Article  Google Scholar 

  6. J. M. Tao, X. K. Zhu, R. O. Scattergood, and C. C. Koch, Mater. Design. 50, 22 (2013).

    Article  Google Scholar 

  7. M. A. Eremina, S. F. Lomayeva, and E. P. Elsukov, Phys. Met. Metallogr. 114, 928 (2013).

    Article  Google Scholar 

  8. Yu. N. Raikov, G. V. Ashihmin, A. K. Nikolaev, N. I. Revina, and S. A. Kostin, Metallurgist. 8, 40 (2007).

    Google Scholar 

  9. K. Ichikawa and M. Achikita, Mater. Trans. JIM 34, 718 (1993).

    Article  Google Scholar 

  10. B. D. Long, M. Umemoto, Y. Todaka, R. Othman, and H. Zuhailawati, Mater. Sci. Eng. A 528, 1750 (2011).

    Article  Google Scholar 

  11. R. H. Palma, A. H. Sepúlveda, R. A. Espinoza, and R. C. Montiglio, J. Mater. Proc. Technol. 169, 62 (2005).

    Article  Google Scholar 

  12. B. D. Long, R. Othman, M. Umemoto, and H. Zuhailawati, J. Alloys Compd. 505, 510 (2010).

    Article  Google Scholar 

  13. P. A. Caravalho, I. Fonesca, M. T. Marques, J. B. Correia, A. Almeida, and R. Vilar, Acta Mater. 53, 967 (2005).

    Article  Google Scholar 

  14. J. B. Correia and M. T. Marques, Mater. Sci. Forum. 455–456, 501 (2004).

    Article  Google Scholar 

  15. T. J. Goodwin, S. H. Yoo, P. Matteazzi, and J. R. Groza, NanoStruct. Mater. 8, 559 (1997).

    Article  Google Scholar 

  16. M. Umemoto, Z. G. Liu, H. Takaoka, M. Sawakami, K. Tsuchiya, and K. Masuyama, Metall. Mater. Trans. A 32, 2127 (2001).

    Article  Google Scholar 

  17. D. Chaira, B. K. Mishra, and S. Sangal, Powder Technol. 191, 149 (2009).

    Article  Google Scholar 

  18. J. Zhang and O. Ostrovski, ISIJ Intern. 41, 333 (2001).

    Article  Google Scholar 

  19. S. F. Lomaeva, V. A. Volkov, A. N. Maratkanova, D. V. Surnin, E. P. Elsukov, S. F. Zayats, A. S. Kaigorodov, V. V. Ivanov, and S. N. Paranin, Materialovedenie (Materials Science), 6, 58 (2010).

    Google Scholar 

  20. V. A. Barinov, E. P. Yelsukov, and L. V. Ovetchkin, A Method for Producing of Cementite Powder, SU Patent No. 1678525 A1. Bull. No. 35 (1991).

    Google Scholar 

  21. E. P. Yelsukov, V. A. Barinov, and L. V. Ovetchkin, J. Mater. Sci. Lett. 11, 662 (1992).

    Article  Google Scholar 

  22. S. F. Lomaeva, Phys. Met. Metallogr. 104, 388 (2007).

    Article  Google Scholar 

  23. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, A. V. Protasov, and E. P. Elsukov, Colloid J. 74, 675 (2012).

    Article  Google Scholar 

  24. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Y. A. Babanov, Phys. Stat. Sol. B 160, 625 (1990).

    Article  Google Scholar 

  25. A. M. Harris, G. B. Schaffer, and N. W. Page, J. Mater. Sci. Lett. 12, 1103 (1993).

    Article  Google Scholar 

  26. J.-C. Crivello, T. Nobuki, and T. Kuji, Mater. Trans. 49, 527 (2008).

    Article  Google Scholar 

  27. F. M. Lucas, B. Trindade, B. F. O. Costa, and G. L. Caër, Key Eng. Mater. 230–232, 631 (2002).

    Article  Google Scholar 

  28. V. G. Harris, K. M. Kemner, B. N. Das, N. C. Koon, and A. E. Ehrlich, Phys. Rev. B 54, 6929 (1996).

    Article  Google Scholar 

  29. S. B. Ogale, P. G. Bilurkar, S. Joshi, and G. Marest, Phys. Rev. B 50, 9743 (1994).

    Article  Google Scholar 

  30. S. J. Stewart, G. F. Goya, G. Punte, and R. C. Mercader, J. Phys. Chem. Sol. 58, 73 (1997).

    Article  Google Scholar 

  31. D. P. Joseph, T. P. David, S. P. Raja, and C. Venkateswaran, Mater. Charact. 59, 1137 (2008).

    Article  Google Scholar 

  32. R. A. Dunlap, D. A. Eelman, and G. R. Mackay, J. Mater. Sci. Lett. 17, 437 (1998).

    Article  Google Scholar 

  33. I. P. Suzdalev, Yu. V. Maksimov, V. K. Imshennik, S. V. Novichikhin, V. V. Matveev, E. A. Gulilin, A. E. Chekanova, O. S. Petrova, and Y. D. Tretyakov, Nanotechnologies in Russia. 2, 73 (2007).

    Google Scholar 

  34. S. J. Campbell, P. E. Clark, and P. R. Liddell, J. Phys. F.: Metal. Phys. 2, L114 (1972).

    Article  Google Scholar 

  35. G. Le Caër, J. M. Dubois, and J. P. Senateur, J. Solid State Chem. 19, 19 (1976).

    Article  Google Scholar 

  36. K. Tokumitsu and M. Umemoto, Mater. Sci. Forum. 360–362, 183 (2001).

    Article  Google Scholar 

  37. S. J. Campbell, G. M. Wang, A. Calka, and W. A. Kaczmarek, Mater. Sci. Eng. A 226–228, 75 (1997).

    Article  Google Scholar 

  38. T. Matsue, Y. Yamada, and Y. Kobayashi, Hyperfine Interact. 205, 31 (2011).

    Article  Google Scholar 

  39. E. Bauer-Grosse and G. Le Caër, Phil. Mag. B 56, 485 (1987).

    Article  Google Scholar 

  40. F. Miani, P. Matteazzi, D. Basset, and G. Le Caër, Hyperfine Inter. 94, 2219 (1994).

    Article  Google Scholar 

  41. P. Matteazzi, F. Miani, and G. L. Caër, Hyperfine Inter. 68, 173 (1991).

    Article  Google Scholar 

  42. K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara, and P. H. Shingu, Z. Metallkd. 83, 132 (1992).

    Google Scholar 

  43. J. Z. Jiang, Q. A. Pankhurst, C. E. Johnson, C. Gente, and R. Bormann, J. Phys.: Cond. Matter. 6, L227 (1994).

    Google Scholar 

  44. J. Eckert, J. C. Holzer, and W. L. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  Google Scholar 

  45. P. P. Macri, S. Enzo, N. Cowlam, R. Frattini, G. Principi, and W. X. Hu, Phil. Mag. B 71, 249 (1995).

    Article  Google Scholar 

  46. M. Eilon, J. Ding, and R. Street, J. Phys. Cond. Matter. 7, 4921 (1995).

    Article  Google Scholar 

  47. W. Keune, J. Lauer, and D. L. Williamson, J. de Physique. 35, C6-473 (1974).

    Google Scholar 

  48. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, pp.571–572, Pergamon Press, London, New York, Paris, Los Angeles (1958).

    Google Scholar 

  49. M. T. Marques, J. B. Correia, and O. Conde, Scr. Mater. 50, 963 (2004).

    Article  Google Scholar 

  50. Y. Jin and M. Hu, Adv. Mater. Res. 306–307, 1747 (2011).

    Article  Google Scholar 

  51. R. J. Longbottom, O. Ostrovski, J. Zhang, and D. Young, Met. Mater. Trans. B 38, 175 (2007).

    Article  Google Scholar 

  52. L. S. Vasil’ev and S. F. Lomayeva, J. Mater. Sci. 3, 5411 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Anatol’evna Eryomina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eryomina, M.A., Lomayeva, S.F., Yelsukov, E.P. et al. Cementite formation in copper matrix under mechanical activation using carbon media. Met. Mater. Int. 20, 1123–1130 (2014). https://doi.org/10.1007/s12540-014-6016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6016-4

Keywords

Navigation