Skip to main content
Log in

Functional properties and morphology of NiTi articulated actuation elements during thermo-mechanical cyclic tests

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Shape memory alloys (SMAs) are active materials able to recover large strains over several thermo-mechanical cycles. In the actuation field, this strain recovery is principally exploited on the mini and micro scales at which SMAs exhibit their highest power density with respect to common lightweight technologies. During the repetitive actuation of a SMA element, certain events occur: strain drift at the beginning of cyclic testing, the accumulation of plastic deformation, and strain stabilisation. In this study, these events as well as the overall mechanical response of an articulated NiTi element were monitored through calorimetry and scanning electron microscopy. Fatigue and cyclic stability were tested under different loads and under different aging conditions. In addition, the surface morphology was continuously observed via scanning electron microscopy to monitor crack growth and propagation during the fatigue test. Finally, before and after the fatigue test, samples were tested through calorimetry to investigate the overall microstructural homogeneity. Results confirm the high potential of the proposed geometry for the development of NiTi non-conventional active elements in the miniature actuation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Funakubo, Shape Memory Alloys, pp.8–23, Gordon & Breach Science Publishers (1984).

    Google Scholar 

  2. K. Otsuka and C. M. Wayman, Shape Memory Materials, pp.27–48, Cambridge University Press (1998).

    Google Scholar 

  3. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, Sens. Actuators A 158, 149 (2010).

    Article  Google Scholar 

  4. J. M. sJani, M. Leary, A. Subic, and M. A. Gibson, Mater. Design 56, 1078 (2014).

    Article  Google Scholar 

  5. I. Y. Young, W. J. Ju, H. L. Jae, K. Kyung-Won, H. Do-Soon, and J. L. Jung, Rev. Sci. Instrum. 84, 015005 (2013).

    Article  Google Scholar 

  6. L. Chih-Ming, C. Cheng-Yu, and L. Chao-Chieh, Smart Mater. Struct. 22, 08500 (2013).

    Google Scholar 

  7. A. Lara-Quintanilla, A. W. Hulskamp, and H. E. N. Bersee, J. of Intel. Mater. Syst. Struct. 25, 2246 (2014).

    Article  Google Scholar 

  8. H. K. Jeong, J. H. Han, S. H. Youn, and J. Lee, J. Intel. Mater. Syst. Struct. 25, 908 (2014).

    Article  Google Scholar 

  9. T. Matsunaga, K. Totsu, M. Esashi, and Y. Haga, Display 34, 89 (2013).

    Article  Google Scholar 

  10. A. Nespoli, D. Rigamonti, E. Villa, and F. Passaretti, Sen. Actuators A 218, 142 (2014).

    Article  Google Scholar 

  11. A. Nespoli, V. Dallolio, F. Stortiero, S. Besseghini, F. Passaretti, and E. Villa, Mater. Sci. Eng. C 37, 171 (2014).

    Article  Google Scholar 

  12. G. Scirè Mammano and E. Dragoni, Int. J. Fatigue 69, 71 (2014).

    Article  Google Scholar 

  13. D. C. Lagoudas, D. A Miller, L. Rong, and P. K. Kumar, Smart Mater. Struct. 18, 085021 (2009).

    Article  Google Scholar 

  14. O.W. Bertacchini, D.C. Lagoudas, and E. Patoor, Proc. SPIE 5053, Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics, p.612, SPIE, San Diego, USA (2003).

    Book  Google Scholar 

  15. E. Hornbogen, J. Mater. Sci. 39, 385 (2004).

    Article  Google Scholar 

  16. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, Mater. Sci. Eng. A 273–275, 658 (1999).

    Google Scholar 

  17. A. R. Pelton, G. H. Huang, P. Moine, and R. Sinclair, Mater. Sci. Eng. A 532, 13 (2012).

    Article  Google Scholar 

  18. C. Dunand-Châtellet and Z. Moummi, Int. J. Fatigue 36, 163 (2012).

    Article  Google Scholar 

  19. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Mater. Sci. Eng. A 378, 24 (2004).

    Article  Google Scholar 

  20. K. M. Melton and O. Mercier, Acta Metall. Mater. 27, 137 (1979).

    Article  Google Scholar 

  21. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Mater. Sci. Eng. A 486, 389 (2008).

    Article  Google Scholar 

  22. J. Van Humbeeck, J. de Physique IV 1, 189 (1991).

    Google Scholar 

  23. M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, and G. Eggeler, Acta Mater. 61, 3667 (2013).

    Article  Google Scholar 

  24. C. Zanotti, P. Giuliani, S. Arnaboldi, and A. Tuissi, Proc. SMST-2010 Global Solutions for Future Applications, p.688, Springer, New York (2011).

    Google Scholar 

  25. A. Nespoli, E. Villa, and S. Besseghini, J. Therm. Anal. Calorim. 109, 39 (2012).

    Article  Google Scholar 

  26. A. Nespoli, E. Bassani, S. Besseghini, and E. Villa, Physics Procedia 10, 182 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Nespoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nespoli, A., Villa, E. & Passaretti, F. Functional properties and morphology of NiTi articulated actuation elements during thermo-mechanical cyclic tests. Met. Mater. Int. 21, 504–510 (2015). https://doi.org/10.1007/s12540-015-4400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4400-3

Keywords

Navigation