Skip to main content
Log in

Nanograins in electrospun oxide nanofibers

  • Review Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Oxide nanofibers synthesized by the electrospinning method have received considerable attention owing to their potential applications in various fields. This paper provides an overview of the growth behavior and the importance of the presence of nanograins in oxide nanofibers synthesized by the electrospinning method. The growth behavior of nanograins in various oxide nanofibers is described in terms of its effect on activation energy and growth exponent, which are then compared with the bulk counterparts. The lower activation energy of nanograins in nanofibers by an order of magnitude revealed that the active participation of nanograins during grain growth is due to higher chemical potential of atoms presented in nanosized grains. In addition, the influences of nanograins on the electrical, gas-sensing, magnetic, optical, and photocatalytic properties of nanofibers are discussed. It is shown that optimization of the nanograin size is essential to ensure that the advantages of oxide nanofibers are utilized in different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu, A. Cao, and C. M. Lieber, Nat. Nanotechnol. 2, 372 (2007).

    Article  Google Scholar 

  2. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 449, 885 (2007).

    Article  Google Scholar 

  3. W. Lu and C. M. Lieber, Nat. Mater. 6, 841 (2007).

    Article  Google Scholar 

  4. F. Kleitz, F. Marlow, G. D. Stucky, and F. Schuth, Chem. Mater. 13, 3587 (2001).

    Article  Google Scholar 

  5. X. P. Shen, H. J. Liu, X. Fan, Y. Jiang, J. M. Hong, and Z. Xu, J. Cryst. Growth, 276, 471 (2005).

    Article  Google Scholar 

  6. Y. Ding, P. Zhang, Z. Long, Y. Jiang, J. Huang, W. Yan, and G. Liu, Mater. Lett. 62, 3410 (2008).

    Article  Google Scholar 

  7. Y.-T. Hsieh, M.-W. Huang, C.-C. Chang, U.-S. Chen, and H.-C. Shih, Thin Solid Films, 519, 1668 (2010).

    Article  Google Scholar 

  8. M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, Sens. Actuators B: Chem. 157, 565 (2011).

    Article  Google Scholar 

  9. J. Y. Park, K. Asokan, S.-W. Choi, and S. S. Kim, Sens. Actuators B: Chem. 152, 254 (2011).

    Article  Google Scholar 

  10. K. Yoon, B. S. Hsiao, and B. Chu, J. Mater. Chem. 18, 5326 (2008).

    Article  Google Scholar 

  11. L. M. Bellan and H. G. Craighead, J. Manuf. Sci. Eng. 131, 034001 (2009).

  12. I. S. Chronakis, J. Mater. Process. Technol. 167, 283 (2005).

    Article  Google Scholar 

  13. Y. Dai, W. Liu, E. Formo, Y. Sun, and Y. Xia, Polym. Adv. Technol. 22, 326 (2011).

    Article  Google Scholar 

  14. M. N. Rahaman, Ceramic Processing and Sintering, pp. 447–492, Marcel Dekkar Inc., New York (1995).

    Google Scholar 

  15. C. H. Shek, G. M. Lin, and J. K. L. Lai, Nanostruct. Mater. 11, 831 (1999).

    Article  Google Scholar 

  16. Q. Pan, J. Xu, X. Dong, and J. Zhang, Sens. Actuators B: Chem. 66, 237 (2000).

    Article  Google Scholar 

  17. C. Drake, A. Amalu, J. Bernard, and S. Seal, J. Appl. Phys. 101, 104307 (2007).

    Article  Google Scholar 

  18. J. K. L. Lai, C. H. Shek, and G. M. Lin, Scripta Mater. 49, 441 (2003).

    Article  Google Scholar 

  19. R. Joesten, J. Am. Ceram. Soc. 68, C–62 (1985).

    Article  Google Scholar 

  20. J. Y. Park and S. S. Kim, J. Am. Ceram. Soc. 92, 1691 (2009).

    Article  Google Scholar 

  21. J. E. Burke and D. Turnbull, Progr. Met. Phys. 3, 220 (1952).

    Article  Google Scholar 

  22. A. J. Ardell, Acta Metall. 20, 601 (1972).

    Article  Google Scholar 

  23. J. Y. Park, S.-W. Choi, K. Asokan, and S. S. Kim, Met. Mater. Int. 16, 785 (2010).

    Article  Google Scholar 

  24. J. Y. Park, S.-W. Choi, K. Asokan, and S. S. Kim, J. Nanosci. Nanotechnol. 10, 3604 (2010).

    Article  Google Scholar 

  25. S.-W. Choi, J. Y. Park, and S. S. Kim, Mater. Chem. Phys. 127, 16 (2011).

    Article  Google Scholar 

  26. S.-W. Choi, J. Y. Park, and S. S. Kim, Chem. Eng. J. 172, 550 (2011).

    Article  Google Scholar 

  27. S.-W. Choi, J. Y. Park, and S. S. Kim, Ceram. Int. 37, 427 (2011).

    Article  Google Scholar 

  28. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Eur. Ceram. Soc. 20, 2753 (2000).

    Article  Google Scholar 

  29. G. Li, L. Li, J. B.-Goates, and B. F. Woodfield, J. Mater. Res. 18, 2664 (2003).

    Google Scholar 

  30. R. W. Jackson, J. P. Leonard, F. S. Pittit, and G. H. Meier, Solid State Ionics. 179, 2111 (2008).

    Article  Google Scholar 

  31. J.-P. Ahn, J.-H. Kim, J.-K. Park, and M.-Y. Huh, Sens. Actuators, B: Chem., 99, 18 (2004).

    Article  Google Scholar 

  32. S.-J. L. Kang, Sintering: Densification, Grain Growth, and Microstructure, pp.9–12, Elsevier Butterworth-Heinemann, Amsterdam (2005).

    Book  Google Scholar 

  33. J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, and P. L. Lee, J. Am. Chem. Soc., 125, 10684 (2003).

    Article  Google Scholar 

  34. R.-J. Yang, F.-S. Yen, S.-M. Lin, and C.-C. Chen, J. Cryst. Growth, 299, 429 (2007).

    Article  Google Scholar 

  35. I.-L. Liu and P. Shen, J. Eur. Ceram. Soc. 29, 2235 (2009).

    Article  Google Scholar 

  36. R. W. Jackson, J. P. Leonard, F. S. Pittit, and G. H. Meier, Solid State Ion. 179, 2111 (2008).

    Article  Google Scholar 

  37. Y. Yeh, I.-H. Liu, and P. Shen, J. Eur. Ceram. Soc. 30, 677 (2010).

    Article  Google Scholar 

  38. J. Y. Park, J. J. Kim, and S. S. Kim, Microelectron. Eng. 101, 8 (2013).

    Article  Google Scholar 

  39. K. Kim, H. Kang, H. Kim, J. S. Lee, S. Kim, W. Kang, and G.T. Kim, Appl. Phys. A, 94, 253 (2009).

    Article  Google Scholar 

  40. W. Park, W. K. Hong, G. Jo, G. Wang, M. Choe, J. Maeng, Y. H. Kahng, and T. Lee, Nanotechnology, 20, 475702 (2009).

    Article  Google Scholar 

  41. Y. I. Lee, K. J. Lee, K. D. Kim, H. T. Kim, Y. W. Chang, S. C. Kang, and Y. H. Choa, J. Nanosci. Nanotechnol. 7, 3910 (2007).

    Article  Google Scholar 

  42. W. Sukbua, J. Muangban, N. Triroj, and P. Jaroenapibal, Procedia Engineering, 47, 370 (2012).

    Article  Google Scholar 

  43. S. K. Lim, S.-Ho. Hwang, D. Chang, and S. Kim, Sens. Actuators B: Chem. 149, 28 (2010).

    Article  Google Scholar 

  44. J. Y. Leng, X.-J. Xu, N. Lv, H.-T. Fan, and T. Zhang, J. Colloid Interf. Sci. 356, 54 (2011).

    Article  Google Scholar 

  45. S.-W. Choi, J. Y. Park, and S. S. Kim, J. Mater. Res. 26, 1662 (2011).

    Article  Google Scholar 

  46. A. Katoch, G.-J. Sun, S.-W. Choi, J.-H. Byun, and S. S. Kim, Sens. Actuators B: Chem. 185, 411 (2013).

    Article  Google Scholar 

  47. X. L. Zhang, Z. Zhang, D. Chen, P. Bäuerle, U. Bache, and Y.-B. Cheng, Chem. Commun. 48, 9885 (2012).

    Article  Google Scholar 

  48. J. H. Song, J. H. Nam, J. H. Cho, B. I. Kim, and M. P. Chun, J. Korean Phys. Soc. 59, 2308 (2011).

    Article  Google Scholar 

  49. W. Pan, R. Han, X. Chi, Q. Liu, and J. Wang, J. Alloys Comp., 577, 192 (2013).

    Article  Google Scholar 

  50. J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N. J. Mellors, and Y. Peng, Acs Nano, 6, 2273 (2012).

    Article  Google Scholar 

  51. X. Yang, Y. Liu, J. Li, and X. Zhang, Micro Nano Lett. 6, 967 (2011).

    Article  Google Scholar 

  52. M. Liu, F. Song, X. Shen, and Y. Zhu, J. Sol-Gel Sci. Technol. 56, 39 (2010).

    Article  Google Scholar 

  53. M. Liu, X. Shen, F. Song, J. Xiang, and X. Meng, Mater. Chem. Phys. 124, 970 (2010).

    Article  Google Scholar 

  54. Q. Liang, X. Sheny, F. Song, and M. Liu, J. Mater. Sci. Technol. 27, 996 (2011).

    Article  Google Scholar 

  55. X. Shen, J. Zheng, X. Meng, and Q. Liang, J. Wuhan Univ. Technol. 26, 384 (2011).

    Article  Google Scholar 

  56. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Nanotechnology, 15, 320 (2004).

    Article  Google Scholar 

  57. A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, Chem. Mater. 19, 6536 (2006).

    Article  Google Scholar 

  58. M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, Nanotechnology, 19, 145603 (2008).

    Article  Google Scholar 

  59. G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, Opt. Express, 17, 22514 (2009).

    Article  Google Scholar 

  60. Y. Wang, I. Ramos, and J. J. Santiago-Avilés, J. Appl. Phys. 102, 093517 (2007).

    Article  Google Scholar 

  61. N. A. M. Barakat, M. S. Khil, F. A. Sheikh, and H. Y. Kim, J. Phys. Chem. C, 112, 12225 (2008).

    Article  Google Scholar 

  62. S. Qi, R. Zuo, Y. Liu, and Y. Wang, Mater. Res. Bull. 48, 1213 (2013).

    Article  Google Scholar 

  63. R. Viter, A. Katoch, and S. S. Kim, Met. Mater. Int. 20, 163 (2013).

    Article  Google Scholar 

  64. B. Dong, Z. Li, Z. Li, X. Xu, M. Song, W. Zheng, C. Wang, S. S. Al-Deyab, and M. El-Newehy, J. Am. Ceram. Soc. 93, 3587 (2010).

    Article  Google Scholar 

  65. X. Zhang, H. Liu, B. Zheng, Y. Lin, D. Liu, and C.-W. Nan, J. Nanomater. 2013, 1 (2013).

    Google Scholar 

  66. P. Singh, K. Mondal, and A. Sharma, J. Colloid Interf. Sci. 394, 208 (2013).

    Article  Google Scholar 

  67. M. S. Hassan, T. Amna, and M.-S. Khil, Ceram. Inter. 40, 423 (2013).

    Article  Google Scholar 

  68. D. Hou, W. Luo, Y. Huang, J. C. Yu, and X. Hu, Nanoscale, 5, 2028 (2013).

    Article  Google Scholar 

  69. S. S. Lee, H. Bai, Z. Liu, and D. D. Sun, Water Res. 47, 4059 (2013).

    Article  Google Scholar 

  70. C. C. Pei and W. W.-F. Leung, Catal. Commun. 37, 100 (2013).

    Article  Google Scholar 

  71. D. K. Sarkar, D. Brassard, M. A. E. Khakani, and L. Ouellet, Appl. Phys. Lett. 87, 253108 (2005).

    Article  Google Scholar 

  72. A. S. Ahmed, A. Azam, M. M. Shafeeq M. Chaman, and S. Tabassum, J. Phys. Chem. Solids. 73, 943 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Sub Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoch, A., Choi, SW. & Kim, S.S. Nanograins in electrospun oxide nanofibers. Met. Mater. Int. 21, 213–221 (2015). https://doi.org/10.1007/s12540-015-4319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4319-8

Keywords

Navigation