Skip to main content
Log in

Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750–1000 °C and strain rates of 0.5 to 10 s−1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s−1 and 900 °C in 10 s−1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. Eng. R 65, 39 (2009).

    Article  Google Scholar 

  2. S. M. Kim, Y. S. Chun, S. Y. Won, Y. H. Kim, and C. S. Lee, Metall. Mater. Trans. A 44A, 1331 (2013).

    Article  Google Scholar 

  3. C. Zhang, Z. Y. Liu, and G. D. Wang, J. Mater. Process. Technol. 211, 1051 (2011).

    Article  Google Scholar 

  4. C. Zhang, Z. Y. Liu, Y. Xu, and G. D. Wang, J. Mater. Process. Technol. 212, 2183 (2012).

    Article  Google Scholar 

  5. F. Gao, Z. Y. Liu, H. T. Liu, and G. D. Wang, Mater. Charact. 75, 93 (2013).

    Article  Google Scholar 

  6. J. J. Jonas, J. Mater. Process. Technol. 117, 293 (2001).

    Article  Google Scholar 

  7. M. R. Toroghinejad, A. O. Humphreys, D. S. Liu, F. Ashrafizadeh, A. Najafizadeh, and J. J. Jonas, Metall. Mater. Trans. A 34A, 1163 (2003).

    Article  Google Scholar 

  8. R. N. Wright, Toughness of Ferritic Stainless Steels, pp.2–33, American Society for Testing and Materials, Philadelphia (1980).

    Book  Google Scholar 

  9. J. Zhou, J. B. Zhang, G. S. Ji, and D. Fan, Trans. Mater. Heat Treat. (China) 31, 50 (2010).

    Google Scholar 

  10. L. H. Yang, L. J. Li, Y. Z. Liu, and L. Y. Zhou, Heat Treat. Met. 36, 78 (2011).

    Google Scholar 

  11. F. Gao, Z. Y. Liu, and G. D. Wang, J. Northeast Univ., Nat. Sci. (China) 32, 1406 (2011).

    Google Scholar 

  12. C. Zhang, Z. Y. Liu, and G. D. Wang, J. Iron Steel Res. (China) 22(12), 27 (2010).

    Google Scholar 

  13. S. V. Mehtonen, L. P. Karjalainen, and D. A. Porter, Mater. Sci. Eng. A 571, 1 (2013).

    Article  Google Scholar 

  14. H. T. Liu, M. Wang, F. Gao, and Z. Y. Liu, J. Northeast Univ., Nat. Sci. (China) 33, 1734 (2012).

    Google Scholar 

  15. S.-I. Kim and Y.-C. Yoo, Met. Mater. Int. 8, 7 (2002).

    Article  Google Scholar 

  16. F. Gao, Y. R. Xu, B. Y. Song, and K. Xia, Metall. Mater. Trans. A 31A, 21 (2000).

    Article  Google Scholar 

  17. F. A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Scripta Mater. 57, 759 (2007).

    Article  Google Scholar 

  18. F. A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, J. Mater. Sci. 43, 7165 (2008).

    Article  Google Scholar 

  19. S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, and K. V. Kasiviswanathan, Mater. Sci. Eng. A 500, 114 (2009).

    Article  Google Scholar 

  20. H. Mirzadeh, J. M. Cabrera, and A. Najafizadeh, Metall. Mater. Trans. A 43A, 108 (2012).

    Article  Google Scholar 

  21. Y. C. Lin, M.-S. Chen, and J. Zhong, Comput. Mater. Sci. 42, 470 (2008).

    Article  Google Scholar 

  22. Y. C. Lin, M.-S. Chen, and J. Zhong, Mater. Sci. Eng. A 499, 88 (2009).

    Article  Google Scholar 

  23. X. P. Liang, Y. Liu, H.-Z. Li, C.-X. Zhou, and G.-F. Xu, Mater. Des. 37, 40 (2012).

    Article  Google Scholar 

  24. A. Etaati, K. Dehghani, G. R. Ebrahimi, and H. Wang, Met. Mater. Int. 19, 5 (2013).

    Article  Google Scholar 

  25. S. Gourdet and F. Montheillet, Acta Mater. 51, 2685 (2003).

    Article  Google Scholar 

  26. D. G. Cram, H. S. Zurob, Y. J. M. Brechet, and C. R. Hutchinson, Acta Materialia. 57, 5218 (2009).

    Article  Google Scholar 

  27. W. Blum, Q. Zhu, R, Merkel, and H. J. McQueen, Mater. Sci. Eng. A 205, 23 (1996).

    Article  Google Scholar 

  28. M. R. Branett and J. J. Jonas, ISIJ Int. 37, 697 (1997).

    Article  Google Scholar 

  29. C. M. Sellars and W. J. McTegart, Acta Metall. 14, 1136 (1966).

    Article  Google Scholar 

  30. C. Zener and J. H. Hollomon, J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  31. C. Zhang, Ph. D. Thesis, pp.109–112, Northeastern University, Shenyang, China (2011).

    Google Scholar 

  32. M. E. Kassner, M. Z. Wang, M.-T. Perez-prado, and S. Alhajeri, Metall. Mater. Trans. A 33A, 3145 (2002).

    Article  Google Scholar 

  33. G. J. Baczynski, J. J. Jonas, and L. E. Collins, Metall. Mater. Trans. A 30A, 3045 (1999).

    Article  Google Scholar 

  34. D. Samantaray, C. Phaniraj, S. Mandal, and A. K. Bhaduri, Mater. Sci. Eng. A 528, 1071 (2011).

    Article  Google Scholar 

  35. S. Gourdet and F. Montheillet, Mater. Sci. Eng. A 283, 274 (2000).

    Article  Google Scholar 

  36. J. K. Solberg, H. J. McQueen, N. Ryum, and E. Nes, Philos. Mag. A 60, 447 (1989).

    Article  Google Scholar 

  37. M. E. Kassner and S. R. Barrabes, Mater. Sci. Eng. A 410–411, 152 (2005).

    Article  Google Scholar 

  38. F. Gao, Z. Y. Liu, H. T. Liu, and G. D. Wang, J. Iron Steel Res. Int. 20, 31 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Liu, Z., Misra, R.D.K. et al. Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb. Met. Mater. Int. 20, 939–951 (2014). https://doi.org/10.1007/s12540-014-5020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5020-z

Keywords

Navigation