Skip to main content
Log in

The influence of rolling practice on notch toughness and texture development in high-strength linepipe

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties and notch toughnesses of an X80 linepipe steel were determined for various test directions in the plane of sheet that had been finish rolled in the γ and in the intercritical (α+γ) regions. The anisotropies of yield strength (YS) and of impact energy are correlated to the presence of various texture components, as detected by the use of an orientation distribution function (ODF) analysis. The final microstructures were similar and consisted of polygonal and acicular ferrite. The textures were also similar; however, after rolling in the (α+γ) region, the intensity of the texture was significantly higher. These textures were mainly comprised of two fibers, the rolling direction (RD), 〈110〉//RD, and the normal direction (ND), 〈111〉//ND, fibers. The observations show that the RD fiber centered at {112}〈110〉 and the {110}〈001〉 orientation were responsible for the YS anisotropy. The relationships between notch toughness and texture were considered for the brittle or cleavage (−196 °C), mixed brittle-ductile (−60 °C), and ductile (room temperature (RT)) modes of fracture. This work shows that the anisotropy of impact energy associated with ductile fracture at the higher temperatures is caused by the {112}〈110〉 component, and that the {001}〈110〉 and {110}〈001〉 components (if present) are responsible for the anisotropy of the impact energy associated with cleavage at low temperatures. The lack of anisotropy of the impact energy observed at −196 °C and the increase in toughness at higher temperatures are interpreted in terms of the volume fractions of textured grains present in the sheet and the intensities of specific texture components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Okatsu, F. Kawabata, and K. Amano: Proc. OMAE, ASME, New York, NY, 1997, vol. 3, pp. 119–24.

    Google Scholar 

  2. Y. Terada, M. Yamashita, T. Hara, H. Tamahiro, and N. Ayukawa: Nippon Steel Technical Report, No. 72, Nippon Steel, Japan, pp. 47–52, (1997).

    Google Scholar 

  3. E. Vasseur, M. Di Fant, A. Danielou, and A. Streisselberger: Proc. Mechanical Working and Steel Processing Conf., ISS-AIME, Warrendale, PA, 1997, pp. 503–10.

    Google Scholar 

  4. M.M. Kostic, L.E. Collins, A. Kapoor, and R.D. O’Hara: Proc. Int. Pipeline Conf., Calgary, June 7–11, ASME, New York, NY, 1998, vol. 1, pp. 665–88.

    Google Scholar 

  5. N.P. Allen, C.C. Earley, K.F. Hale, and J.H. Rendall: J. Iron Steel Inst., 1964, pp. 808–17.

  6. B. Faucher and B. Dogan: Metall. Trans. A, 1988, vol. 19A, pp. 505–16.

    CAS  Google Scholar 

  7. A.O. Humphreys, X. Li, M. Strangwood, and P. Bowen: Int. Offshore and Polar Engineering Conf., Los Angeles, CA, The International Society of Offshore and Polar Engineers, Los Angeles, CA, 1996, vol. 4, pp. 263–68.

    Google Scholar 

  8. J.H. Cheng, J.D. Embury, M.T. Shehata, J.D. Boyd, and D.B. McCutcheon: Can. Metall. Q., 1982, vol. 21, pp. 299–308.

    CAS  Google Scholar 

  9. J. Sun and J.D. Boyd: 36th MWSP Conf. Proc., ISS-AIME, Warrendale, PA, 1995, vol. XXXII, pp. 495–501.

    Google Scholar 

  10. D.M. Fegredo: Can. Metall. Q., 1975, vol. 14, pp. 243–55.

    CAS  Google Scholar 

  11. B.L. Bramfitt and A.R. Marder: Processing and Properties of Low Carbon Steel, AIME, New York, NY, 1973, pp. 191–224.

    Google Scholar 

  12. A. Akbarzadeh, L.E. Collins, M. Kostic, and J.J. Jonas: 36th MWSP Conf. Proc., ISS-AIME, Warrendale, PA, 1995, vol. XXXII, pp. 337–44.

    Google Scholar 

  13. A. Akbarzadeh, G.E. Ruddle, M. Kostic, and J.J. Jonas: 37th MWSP Conf. Proc., ISS, Warrendale, PA, 1996, vol. XXXIII, pp. 499–507.

    Google Scholar 

  14. T. Tanaka: Int. Met. Rev., 1981, vol. 264, pp. 185–212.

    Google Scholar 

  15. H. Inagaki: Proc. ICOTOM 6, S. Nagashima, ed., ISIJ, Tokyo, 1981, pp. 149–63.

    Google Scholar 

  16. H. Inagaki: Z. Metallkd., 1983, vol. 74, (11), pp. 716–26.

    CAS  Google Scholar 

  17. H. Inagaki, K. Kurihara, and I. Kozasu: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, p. 75.

    Google Scholar 

  18. T.H. Webster, R.E. Smallman, and I.L. Dillamore: Met. Sci. J., 1971, vol. 5, pp. 68–73.

    Article  CAS  Google Scholar 

  19. T.H. Webster, I.L. Dillamore, and R.E. Smallman: Met. Sci. J., 1971, vol. 5, pp. 74–80.

    Article  CAS  Google Scholar 

  20. D. Daniel and J.J. Jonas: Metall. Trans. A, 1990, vol. 21A, pp. 331–43.

    CAS  Google Scholar 

  21. G.E. Dieter: Mechanical Metallurgy, 2nd ed., Brittle Fracture and Impact Testing, McGraw-Hill, New York, NY, 1976, pp. 490–527.

    Google Scholar 

  22. H.L. Ewalds and R.J.H. Wanhill: Fracture Mechanics, Edward Arnold (Publishers) Ltd., Baltimore, MD, 1984, pp. 234–40.

    Google Scholar 

  23. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Inc., New York, NY, 1983, pp. 246–351.

    Google Scholar 

  24. N.P. Allen, B.E. Hopkins, and J.E. McLennan: Proc. R. Soc., 1956, vol. 234A, pp. 221–46.

    CAS  Google Scholar 

  25. F. Boratto, R. Barbosa, S. Yue, and J.J. Jonas: Int. Conf. Phys. Met. THERMEC-88, Tokyo, The Iron and Steel Institute of Japan, Tokyo, Japan, 1988, pp. 383–90.

    Google Scholar 

  26. ASTM Standards E8M-98 and E23-96, ASTM, 1998, Philadelphia, PA.

  27. H.J. Bunge: Texture Analysis in Materials Science, Butterworth and Co., London, 1982.

    Google Scholar 

  28. J.A. Rinebolt and W.J. Harris, Jr.: Trans. ASM, 1951, vol. 43, pp. 1175–1201.

    Google Scholar 

  29. M.R. Barnett and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 697–705.

    CAS  Google Scholar 

  30. P. Van Houtte: The MTM-FHM Software System, Release 1, Katholieke Universiteit Leuven, Dept. of Metallurgy and Materials Engineering, Leuven, Belgium, 1992.

    Google Scholar 

  31. R.E. Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, MA, 1994.

    Google Scholar 

  32. A. Akbarzadeh and J.J. Jonas: Proc. Thermomechanical Processing in Theory, Modelling & Practice, Stockholm, 1996, Thermomechanical Processing in Theory, Modelling and Practice, Stockholm, Sweden, pp. 342–50.

    Google Scholar 

  33. C.E. Ransley and H.P. Rooksby: J. Inst. Met., 1938, vol. 62, p. 205.

    Google Scholar 

  34. Y. Ohba and T. Fujii: Proc. ICOTOM 6, S. Nagashima, ed., ISIJ, Tokyo, 1981, pp. 291–99.

    Google Scholar 

  35. D. Broek: Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, 1971.

    Google Scholar 

  36. J.W. Christian: Metall. Trans. A, 1983, vol. 14A, pp. 1237–56.

    CAS  Google Scholar 

  37. P. Franciosi: Acta Metall., 1983, vol. 31, pp. 1331–42.

    Article  CAS  Google Scholar 

  38. T. Senuma, H. Yada, R. Shimizu, and J. Harase: Acta Metall., 1990, vol. 38, pp. 2673–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baczynski, G.J., Jonas, J.J. & Collins, L.E. The influence of rolling practice on notch toughness and texture development in high-strength linepipe. Metall Mater Trans A 30, 3045–3054 (1999). https://doi.org/10.1007/s11661-999-0215-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0215-5

Keywords

Navigation