Skip to main content
Log in

Structural and optical properties of bandgap engineered bismuth titanate by cobalt doping

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The wide band gap of complex oxides is one of the major obstacles limiting their use in photovoltaic cells. To tune the bandgap of complex oxides, nano-sized bismuth titanate-based powders were synthesized by conventional solid reaction method. X-ray diffraction patterns confirmed that all powders were crystallized in an orthorhombic structure. The photoluminescence signal shows that there was no contribution to the optical bandgap from unwanted oxygen vacancy. The UV-vis absorption spectra of LaCo-BiT powder showed that the optical bandgap drastically decreased from 3.1eV to 2.5eV, while those of of BiT and La-BiT showed change in the optical bandgap. From these observations, we could experimentally confirm that cobalt atoms were responsible for the modification of the electronic structure in BiT-based oxides. This approach to controlling the bandgap could be applied to other complex oxides materials, such as other types of Aurivillius phase materials for use in emerging oxide optoelectronic and energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, Science 324, 63 (2009).

    Article  CAS  Google Scholar 

  2. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotech. 5, 143 (2010).

    Article  CAS  Google Scholar 

  3. H. Huang, Nat. Photon. 4, 134 (2010).

    Article  CAS  Google Scholar 

  4. P. Irvin, Y. Ma, D. F. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C.-B. Eom, and J. Levy, Nat. Photon. 4,12, 849 (2010).

    Article  CAS  Google Scholar 

  5. Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, Nat. Mater. 10, 296 (2011).

    Article  CAS  Google Scholar 

  6. J. Seidel, D. Fu, S. Y. Yang, E. Alarcón-Lladó, J. Wu, R. Ramesh, and J. W. Ager. Phys. Rev. Lett. 107, 126805 (2011).

    Article  Google Scholar 

  7. C. Jia, Y. Chen, and W.F. Zhang, J. Appl. Phys. 105, 113108 (2009).

    Article  Google Scholar 

  8. A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis, Acta. Cryst. B 46, 474 (1990).

    Article  Google Scholar 

  9. H. Ishiwara, J.Nanosci. Natotechnol. 12, 7619 (2012).

    Article  CAS  Google Scholar 

  10. J. F. Scott, Ferroelectric Memories, pp.24–31, Springer-Verlag, Heideberge (2000).

    Book  Google Scholar 

  11. D. J. Singh, S. S. A. Seo, and H. N. Lee, Phys. Rev. B 82, 180103 (2010).

    Article  Google Scholar 

  12. W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison, and H. N. Lee. Nat. Comm. 3, 689 (2012).

    Article  Google Scholar 

  13. S. W. Choi and H. N. Lee, Appl. Phy. Lett. 100, 13 132903 (2012).

    Google Scholar 

  14. R. C. Oliveira, L. S. Cavalcante, J. C. Sczancoski, E. C. Aguiar, J. W. M. Espinosa, J. A. Varela, P. S. Pizani, and E. Longo, J. Alloys Compd. 478, 661 (2009).

    Article  CAS  Google Scholar 

  15. L. B. Kong, J. Ma, W. Zhu, and O. K. Tan, Mater. Lett. 51, 108 (2001).

    Article  CAS  Google Scholar 

  16. V. Marina, A. C. Caballero, C. Moure, P. Durán, and J. F. Fernández, J. Am. Ceram. Soc. 82, 2411 (1999).

    Article  Google Scholar 

  17. D. L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).

    Article  Google Scholar 

  18. Z. G. Hu, Y. W. Li, F. Y. Yue, Z. Q. Zhu, J. H. Chu, Appl. Phys. Lett. 91, 221903 (2007).

    Article  Google Scholar 

  19. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).

    Article  CAS  Google Scholar 

  20. H. N. Lee, D. Hesse, N. Zakharov, and U. Gösele, Science 296, 2006 (2002).

    Article  CAS  Google Scholar 

  21. J. S. Lee and Q. X. Jia, Electron. Mater. Lett. 4, 95 (2008).

    Google Scholar 

  22. J. W. Hyun, Y. J. Kim, J. H. Lee, and K. A. Lee, Electron. Mater. Lett. 8, 581 (2012).

    Article  CAS  Google Scholar 

  23. X. Wu, Y. Zhai, M. Xu, and Y. Kan, J. Nanosci. Nanotechnol. 12, 6567 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wung Bark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bark, C.W. Structural and optical properties of bandgap engineered bismuth titanate by cobalt doping. Met. Mater. Int. 19, 1361–1364 (2013). https://doi.org/10.1007/s12540-013-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-0641-1

Key words

Navigation