Skip to main content
Log in

Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The photoelectric properties of complex oxides have prompted interest in materials with a tunable band gap because of the absorption. The substitution of iron atoms in La-modified bismuth titanate (BLT) can lead to dramatic improvements in the band gap; however, the substitution of iron atoms while maintaining the original bismuth layer structure without forming a BiFeO3 secondary phase is quite challenging. Therefore, a series of Fe-doped BLT (Fe-BLT) samples were synthesized using a solid reaction at various calcination temperatures (300 ∼ 900°C) to remove the secondary phase. The structural and the optical properties were analyzed by using X-ray diffraction and ultraviolet-visible absorption spectroscopy. This paper reports a new route by using high-temperature calcination, to synthesize the Aurivillius phase with a reduced optical band gap due to the thermal decomposition of BiFeO3 during high-temperature calcination. This simple route to reduce the second phase can be adapted to other complex oxides for use in emerging oxide optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Qin, K. Yao and Y. C. Liang, Appl. Phys. Lett. 93, 122904 (2008).

    Article  ADS  Google Scholar 

  2. J. Xing, K. J. Jin, H. B. Lu, M. He, G. Z. Liu, J. Qiu and G. Z. Yang, Appl. Phys. Lett. 92, 071113 (2008).

  3. Y. S. Yang, S. J. Lee, S. Yi, B. G. Chae, S. H. Lee, H. J. Joo and M. S. Jang, Appl. Phys. Lett. 76, 774 (2000).

    Article  ADS  Google Scholar 

  4. J. F. Scott, Science 315, 954 (2007).

    Article  ADS  Google Scholar 

  5. M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).

    Article  ADS  Google Scholar 

  6. S. Y. Yang et al., Appl. Phys. Lett. 95, 062909 (2009).

  7. Y. Hou, J. Q. Xue, Z. M. Huang, T. X. Li, Y. J. Ge and J. H. Chu, Thin Solid Films 517, 901 (2008).

    Article  ADS  Google Scholar 

  8. Z. G. Hu, G. S. Wang, Z. M. Huang and J. H. Chu, J. Appl. Phys. 93, 3811 (2003).

    Article  ADS  Google Scholar 

  9. S. H. Hu, J. Chen, Z. G. Hu, G. S. Wang, X. J. Meng, J. H. Chu and N. Dai, Mater. Res. Bull. 39, 1223 (2004).

    Article  Google Scholar 

  10. W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison and H. N. Lee, Nat. Comm. 3, 689 (2012).

    Article  ADS  Google Scholar 

  11. N. Kumar, A. Kaushal, C. Bhwardwaj and D. Kaur, Optoelectron. Adv. Mater. Rapid Commun. 4, 1497 (2010).

    Google Scholar 

  12. W. S. Choi and H. N. Lee, Appl. Phys. Lett. 100, 132903 (2012).

    Article  ADS  Google Scholar 

  13. J. Y. Han, and C. W. Bark, Mol. Cryst. Liq. Cryst. 597, 37 (2014).

    Article  Google Scholar 

  14. C. W. Bark, Met. Mater. Int. 19, 1361 (2013).

    Article  Google Scholar 

  15. M. Gotic, S. Popovic and S. Music, Mater. Lett. 61, 709 (2007).

    Article  Google Scholar 

  16. R. Nowosielski, G. Dercz, L. Paj¸ak and R. Babilas, J. Achiev. Mater. Manuf. Eng. 17, 117 (2006).

    Google Scholar 

  17. M. F. R. Fouda, M. B. ElKholy, S. A. Mostafa, A. I. Hussien, M. A. Wahba and M. F. El-Shahat, Adv. Mat. Lett. 4, 347 (2013).

    Google Scholar 

  18. P. C Sati, M. Arora, S. Chauhan, S. Chhoker and M. Kumar, J. Phys. Chem. Solids. 75, 105 (2014).

    Article  Google Scholar 

  19. D. C. Arnold, K. S. Knight, F. D. Morrison and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).

  20. D. C. Arnold, K. S. Knight, G. Catalan, S. A. T. Redfern, J. F. Scott, P. Lightfoot and F. D. Morrison, Adv. Funct. Mater. 20, 2116 (2010).

    Article  Google Scholar 

  21. J. Rymarczyk, D. Machura and J. Ilczuk, Eur. Phys. J. Spec. Top. 154, 187 (2008).

    Article  Google Scholar 

  22. J-B. Li, Y. P. Huang, G. H. Rao, G. Y. Liu, J. Luo, J. R. Chen and J. K. Liang, Appl. Phys. Lett. 96, 222903 (2010).

    Article  ADS  Google Scholar 

  23. W. Zhao, L. E, J. Ya, Z. Liu and H. Zhou, Bull. Korean Chem. Soc. 33, 2305 (2012).

    Article  Google Scholar 

  24. D. L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).

    Article  ADS  Google Scholar 

  25. J. S. Jang, P. H. Borse, J. S. Lee, K. T. Lim, O. S. Jung, E. D. Jeong, J. S. Bae, M. S. Won and H. G. Kim, Bull. Korean Chem. Soc. 30, 30212009 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wung Bark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J.Y., Bark, C.W. Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase. Journal of the Korean Physical Society 66, 1371–1375 (2015). https://doi.org/10.3938/jkps.66.1371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1371

Keywords

Navigation