Skip to main content
Log in

In-situ deposition of silica layers during the operation of a micro-gas turbine and their effect on the oxidation of superalloy blades

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Silica-based oxide layers were deposited in-situ on turbine blades made from Inconel 713 during the operation of a 13 kgf-class gas turbine, and their effect on the ex-situ oxidation behavior of the blades at 1050 °C was examined. The two turbines were driven by burning liquid petroleum gas (LPG), one turbine at a rotation speed of 35,000 rpm for 4 h (TB04), and the other at 42,000 rpm for 8 h (TB08). For deposition, tetraethylorthosilicate (TEOS) was sprayed into the fuel line immediately ahead of the combustion chamber. The TEOS-to-LPG ratio for TB04 and TB08 was maintained at 5.4 wt. % and 2.3 wt. %, respectively. Directly after operation, the turbine blades were coated with silica layers to a thickness of ∼10 μm, independent of the operating conditions. These oxide layers on the blades provided excellent protection against oxidation during both operation and the ex-situ isothermal oxidation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Horlock, Advanced Gas Turbine Cycles, 1 st ed., p 109–129, Elsevier Science Ltd, Amsterdam (2003).

    Google Scholar 

  2. R. Vaßen, H. Kaßner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stöver, Surf. Coat. Technol. 202, 4432 (2008).

    Article  Google Scholar 

  3. A. Killinger, M. Kuhn, and R. Gadow, Surf. Coat. Technol. 201, 1922 (2006).

    Article  CAS  Google Scholar 

  4. W. Xie, E. Jordan, and M. Gell, Mat. Sci. Eng. A 419, 50 (2006).

    Article  Google Scholar 

  5. G. Lee, A. Atkinson, and A. Selçuk, Surf. Coat. Technol. 201, 3931 (2006).

    Article  CAS  Google Scholar 

  6. J. R. Nicholls, M. J. Deakin, and D. S. Rickerby, Wear 233–235, 352 (1999).

    Article  Google Scholar 

  7. N. M. Yanar, G. H. Meier, and F. S. Pettit, Scripta mater. 46, 325 (2002).

    Article  CAS  Google Scholar 

  8. M.-J. Pindera, J. Aboudi, and S. M. Arnold, Int. J. Plasticity 21, 1061 (2005).

    Article  MATH  Google Scholar 

  9. M. C. Mayoral, J. M. Andrés, M. T. Bona, V. Higuera, and F. J. Belzunce, Surf. Coat. Technol. 202, 5210 (2008).

    Article  CAS  Google Scholar 

  10. J. Moon, H. Choi, H. Kim, and C. Lee, Surf. Coat. Technol. 155, 1 (2002).

    Article  CAS  Google Scholar 

  11. Q. Wei, H. Guo, S. Gong, and H. Xu, Thin Solid Films 516, 5736 (2008).

    Article  CAS  ADS  Google Scholar 

  12. A. Afrasiabi, M. Saremi, and A. Kobayashi, Mater. Sci. Eng. A 478, 264 (2008).

    Article  Google Scholar 

  13. W. Ma, D. Mack, J. Malzbender, R. Vaßen, and D. Stöver, J. Euro. Ceram. Soc. 28, 3071 (2008).

    Article  CAS  Google Scholar 

  14. W. Ma, S. Gong, H. Xu, and X. Cao, Surf. Coat. Technol. 200, 5113 (2006).

    Article  CAS  Google Scholar 

  15. X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, Adv. Mater. 15, 1438 (2003).

    Article  CAS  Google Scholar 

  16. R. Vassen, F. Traeger, and D. Stöver, Int. J. Appl. Ceram. Technol. 1, 351 (2004).

    CAS  Google Scholar 

  17. R. Gadow and M. Lischka, Surf. Coat. Technol. 151–152, 392 (2002).

    Article  Google Scholar 

  18. J. M. Hampikian and W. B. Carter, Mat. Sci. Eng. A 267, 7 (1999).

    Article  Google Scholar 

  19. M. D. Lima, M. J. de Andrade, S. Stein, R. Bonadiman, and C. P. Bergmann, Nanotechnology 16, 2497 (2005).

    Article  CAS  ADS  Google Scholar 

  20. D. Tucker, L. Lawson, and R. Gemmen, Proc. ASME Power Conf., Chicago, Illinois, PWR2005-50127(2005).

  21. P. P. Walsh and P. Fletcher, Gas Turbine Performance, 2nd ed., Chapter 3, p138, Blackwell Science, Oxford (2004).

    Google Scholar 

  22. M. T. Kim and O. Y. Oh, J. Alloys Compd. 477, 224 (2009).

    Article  CAS  Google Scholar 

  23. Y. Qin and W. Pan, Mater. Sci. Eng. A (in press).

  24. B. C. Valek and J. M. Hampikian, Surf. Coat. Technol. 94–95, 13 (1997).

    Article  Google Scholar 

  25. D. Ribero, R. Restrepo, C. Paucar, and C. García, J. Mater. Proc. Technol. 209, 986 (2009).

    Article  CAS  Google Scholar 

  26. B. Bai, P. Wang, L. Wu, L. Yang, and Z. Chena, Mater. Chem. Phys. 114, 26 (2009).

    Article  CAS  Google Scholar 

  27. R. J. Hecht, U. S patent 4034142 (1977).

  28. G. E. Creech and M. J. Barber, US Patent 5057196 (1991).

  29. K. Shirvani, M. Saremi, A. Nishikata, and T. Tsuru, Mat. Sci. Forum 461–464, 335 (2004).

    Article  Google Scholar 

  30. H. C. Chen, E. Pfender, and J. Heberlein, Thin Solid Films 315, 159 (1998).

    Article  CAS  ADS  Google Scholar 

  31. R. Hofman, J. G. F. Westheim, T. Fransen, and P. J. Gellings, Mater. Manuf. Processes 7, 227 (1992).

    Article  CAS  Google Scholar 

  32. F. J. Liu, M. C. Zhang, J. X. Dong, and Y. W. Zhang, Acta Metall. Sin. 20, 102 (2007).

    CAS  Google Scholar 

  33. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.T., Kim, D.S. & Oh, W.Y. In-situ deposition of silica layers during the operation of a micro-gas turbine and their effect on the oxidation of superalloy blades. Met. Mater. Int. 16, 129–136 (2010). https://doi.org/10.1007/s12540-010-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0129-1

Keywords

Navigation