Skip to main content

Development of Silicates and Spraying Techniques for Environmental Barrier Coatings

  • Chapter
  • First Online:
Ceramic Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 364 Accesses

Abstract

Currently, silicon carbide fibre-reinforced silicon carbide matrix ceramic matrix composites are widely used as high-temperature components for next-generation gas-turbine engines. However, hot steam and volcanic ash degrade the mechanical properties of silicon carbide. Environmental barrier coatings (EBCs) play an important role in mitigating corrosion under the harsh operating conditions required for next-generation turbines. In addition to corrosion resistance, the coefficient of thermal expansion and phase stability are important for EBC material selection to stabilise the layer structure during thermal cycling. Various silicates have been considered as candidates for EBCs, where rare-earth silicates have shown promising results. Moreover, various spraying techniques that can achieve a layered EBC structure have been considered in addition to appropriate material selection as key strategies for improving the reliability and lifetime of EBCs. Crystallisation, porosity, and crack formation caused by the formation of secondary phases due to Si evaporation are controlled by thermal spraying techniques. This chapter comprehensively evaluates the selection of silicates and spraying techniques for EBCs and discusses their prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTE:

Coefficient of thermal expansion

CMC:

Ceramics matrix composite

EBC:

Environmental barrier coating

TBC:

Thermal barrier coating

SiC:

Silicon carbide

SiCf/SiCm:

Silicon carbide fibre-reinforced silicon carbide matrix

CMAS:

Calcium magnesium aluminosilicate

Mullite:

Al6Si2O13

BSAS:

Ba1-xSrxAl2Si2O8

RE:

Rare-earth

CIP:

Cold isostatic press

HP:

Hot press

SPS:

Spark plasma sintering

APS:

Atmospheric plasma spraying

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

SPS:

Suspension plasma spraying

LPPS:

Low-pressure plasma spraying

HVOF:

High-velocity oxygen fuel

TGO:

Thermally grown oxide

References

  1. Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687

    Article  CAS  Google Scholar 

  2. Zhang, J., Guo, X., Jung, Y.G., Li, L., Knapp, J.: Lanthanum zirconate based thermal barrier coatings: a review. Surf. Coat. Technol. 323, 18–29 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.019

    Article  CAS  Google Scholar 

  3. Nguyen, S.T., Nakayama, T., Suematsu, H., Suzuki, T., Takeda, M., Niihara, K.: Low thermal conductivity Y2Ti2O7 as a candidate material for thermal/environmental barrier coatings. Ceram. Int. 42, 11314–11323 (2016). https://doi.org/10.1016/j.ceramint.2016.04.052

    Article  CAS  Google Scholar 

  4. Richards, B.T., Wadley, H.N.G.: Plasma spray deposition of tri-layer environmental barrier coatings. J. Eur. Ceram. Soc. 34, 3069–3083 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.027

    Article  CAS  Google Scholar 

  5. Opila, E.J., Hann, R.E.: Paralinear oxidation of CVD SiC in water vapour. J. Am. Ceram. Soc. 80, 197–205 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02810.x

    Article  CAS  Google Scholar 

  6. Opila, E.J.: Oxidation and volatilization of silica formers in water vapor. J. Am. Ceram. Soc. 86, 1238–1248 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03459.x

    Article  CAS  Google Scholar 

  7. Tejero-Martin, D., Bennett, C., Hussain, T.: A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 41, 1747–1768 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.057

    Article  CAS  Google Scholar 

  8. Lee, K.N.: Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life. J. Am. Ceram. Soc. 102, 1507–1521 (2019). https://doi.org/10.1111/jace.15978

    Article  CAS  Google Scholar 

  9. Lee, K.N., Fox, D.S., Eldridge, J.I., Zhu, D., Robinson, R.C., Bansal, N.P., Miller, R.A.: Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J. Am. Ceram. Soc. 86, 1299–1306 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03466.x

    Article  CAS  Google Scholar 

  10. Lee, K.N., Fox, D.S., Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 1705–1715 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.12.013

    Article  CAS  Google Scholar 

  11. Klemm, H.: Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 93, 1501–1522 (2010). https://doi.org/10.1111/j.1551-2916.2010.03839.x

    Article  CAS  Google Scholar 

  12. Dong, Y., Ren, K., Lu, Y., Wang, Q., Liu, J., Wang, Y.: High-entropy environmental barrier coating for the ceramic matrix composites. J. Eur. Ceram. Soc. 39, 2574–2579 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.022

    Article  CAS  Google Scholar 

  13. Sun, L., Luo, Y., Tian, Z., Du, T., Ren, X., Li, J., Hu, W., Zhang, J., Wang, J.: High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapour and molten calcium–magnesium–aluminosilicate (CMAS). Corros Sci. 175, 108881 (2020). https://doi.org/10.1016/j.corsci.2020.108881

  14. Sun, L., Luo, Y., Ren, X., Gao, Z., Du, T., Wu, Z., Wang, J.: A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability. Mater Res Lett. 8, 424–430 (2020). https://doi.org/10.1080/21663831.2020.1783007

    Article  CAS  Google Scholar 

  15. Ren, X., Tian, Z., Zhang, J., Wang, J.: Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4) 2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scr. Mater. 168, 47–50 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.018

    Article  CAS  Google Scholar 

  16. Ridley, M., Gaskins, J., Hopkins, P., Opila, E.: Tailoring thermal properties of multi-component rare earth monosilicates. Acta Mater. 195, 698–707 (2020). https://doi.org/10.1016/j.actamat.2020.06.012

    Article  CAS  Google Scholar 

  17. Dong, Y., Ren, K., Wang, Q., Shao, G., Wang, Y.: Interaction of multicomponent disilicate (Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7 with molten calcia-magnesia-aluminosilicate. J. Adv. Ceram. 11, 66–74 (2022). https://doi.org/10.1007/s40145-021-0517-7

  18. Ren, X., Zhang, J., Wang, J.: Composition effects on elastic, thermal and corrosion properties of multiple-RE silicate (Ho1/4Er1/4Yb1/4Lu1/4)2SiO5 as a promising thermal and environmental barrier coating material. J. Eur. Ceram. Soc. 42, 7258–7266 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.08.034

    Article  CAS  Google Scholar 

  19. Sun, L., Ren, X., Luo, Y., Lv, X., Wang, J., Oh, Y., Wang, J.: Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500 °C for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate. Corros Sci. 203, 110343 (2022). https://doi.org/10.1016/j.corsci.2022.110343

  20. Turcer, L.R., Sengupta, A., Padture, N.P.: Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings. Scr. Mater. 191, 40–45 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.008

    Article  CAS  Google Scholar 

  21. Wang, X., Cheng, M., Xiao, G., Wang, C., Qiao, R., Zhang, F., Bai, Y., Li, Y., Wu, Y., Wang, Z.: Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25) 2Si2O7 ceramics. Corros Sci. 192, 109786 (2021). https://doi.org/10.1016/j.corsci.2021.109786

  22. Chen, Z., Lin, C., Zheng, W., Zeng, Y., Niu, Y.: Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping. Corros. Sci. 199, 110217 (2022). https://doi.org/10.1016/j.corsci.2022.110217

    Article  CAS  Google Scholar 

  23. Chen, Z., Lin, C., Zheng, W., Jiang, C., Zeng, Y., Song, X.: Water vapour corrosion behaviors of high-entropy pyrosilicates. J Materiomics. 8, 992–1000 (2022). https://doi.org/10.1016/j.jmat.2022.03.002

    Article  Google Scholar 

  24. Guo, X., Zhang, Y., Li, T., Zhang, P., Shuai, K., Li, J., Shi, X.: High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: A potential environmental barrier coating material. J Eur Ceram Soc. 42, 3570–3578 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.03.006

  25. Wang, X., He, Y., Wang, C., Bai, Y., Zhang, F., Wu, Y., Song, G., Wang, Z.J.: Thermal performance regulation of high-entropy rare-earth disilicate for thermal environmental barrier coating materials. J. Am. Ceram. Soc. 105, 4588–4594 (2022). https://doi.org/10.1111/jace.18456

    Article  CAS  Google Scholar 

  26. Chen, Z., Tian, Z., Zheng, L., Ming, K., Ren, X., Wang, J., Li, B.: (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion. J. Adv. Ceram. 11, 1279–1293 (2022). https://doi.org/10.1007/s40145-022-0609-z

  27. Ridley, M.J., Tomko, K.Q., Tomko, J.A., Hoglund, E.R., Howe, J.M., Hopkins, P.E., Opila, E.J.: Tailoring thermal and chemical properties of a multi-component environmental barrier coating candidate (Sc0.2Nd0.2Er0.2Yb0.2Lu0.2)2Si2O7. Materialia (Oxf). 26, (2022). https://doi.org/10.1016/j.mtla.2022.101557

  28. Salanova, A., Brummel, I.A., Yakovenko, A.A., Opila, E.J., Ihlefeld, J.F.: Phase stability and tensorial thermal expansion properties of single to high-entropy rare-earth disilicates. J. Am. Ceram. Soc. (2023). https://doi.org/10.1111/jace.18986

    Article  Google Scholar 

  29. Abrar, S., Ma, Z., Liu, L., Nazeer, F., Malik, A.: Ultra-low thermal conductivity and excellent high temperature resistance against calcium-magnesium-alumina-silicate of a novel β-type pyrosilicates. J Alloys Compd. 169001 (2023). https://doi.org/10.1016/j.jallcom.2023.169001

  30. Tan, Y., Liao, W., Zeng, S., Jia, P., Teng, Z., Zhou, X., Zhang, H.: Microstructures, thermophysical properties and corrosion behaviours of equiatomic five-component rare-earth monosilicates. J Alloys Compd. 907, (2022). https://doi.org/10.1016/j.jallcom.2022.164334

  31. Chen, H., Xiang, H., Dai, F.Z., Liu, J., Zhou, Y.: High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J Mater Sci Technol. 36, 134–139 (2020). https://doi.org/10.1016/j.jmst.2019.07.022

  32. Liao, W., Tan, Y., Zhu, C., Teng, Z., Jia, P., Zhang, H.: Synthesis, microstructures, and corrosion behaviors of multi-components rare-earth silicates. Ceram. Int. 47, 32641–32647 (2021). https://doi.org/10.1016/j.ceramint.2021.08.160

    Article  CAS  Google Scholar 

  33. Liu, D., Jia, X., Shi, B., Wang, Y., Xu, B.: (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7: A novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity. Mater Chem Phys. 286, (2022). https://doi.org/10.1016/j.matchemphys.2022.126181

  34. Vaßen, R., Bakan, E., Gatzen, C., Kim, S., Mack, D.E., Guillon, O.: Environmental barrier coatings made by different thermal spray technologies. Coatings. 9, (2019). https://doi.org/10.3390/coatings9120784

  35. Fernández-Carrión, A.J., Allix, M., Becerro, A.I.: Thermal expansion of rare-earth pyrosilicates. J. Am. Ceram. Soc. 96, 2298–2305 (2013). https://doi.org/10.1111/jace.12388

    Article  CAS  Google Scholar 

  36. Cao, G., Ouyang, J.-H., Li, Y., Liu, Z.-G., Ding, Z.-Y., Wang, Y.-H., Jin, Y.-J., Wang, Y.-M., Wang, Y.-J.: Improved thermophysical properties of rare-earth monosilicates applied as environmental barrier coatings by adjusting structural distortion with RE-doping. J. Eur. Ceram. Soc. 41, 7222–7232 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.07.029

    Article  CAS  Google Scholar 

  37. Zhou, Y.C., Zhao, C., Wang, F., Sun, Y.J., Zheng, L.Y., Wang, X.H.: Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7. J. Am. Ceram. Soc. 96, 3891–3900 (2013). https://doi.org/10.1111/jace.12618

    Article  CAS  Google Scholar 

  38. Li, Y., Luo, Y., Tian, Z., Wang, J., Wang, J.: Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). J. Eur. Ceram. Soc. 38, 3539–3546 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.014

    Article  CAS  Google Scholar 

  39. Richards, B.T., Young, K.A., de Francqueville, F., Sehr, S., Begley, M.R., Wadley, H.N.G.: Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapour. Acta Mater. 106, 1–14 (2016). https://doi.org/10.1016/j.actamat.2015.12.053

    Article  CAS  Google Scholar 

  40. Bakan, E., Mack, D.E., Lobe, S., Koch, D., Vaßen, R.: An investigation on burner rig testing of environmental barrier coatings for aerospace applications. J. Eur. Ceram. Soc. 40, 6236–6240 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.016

    Article  CAS  Google Scholar 

  41. Bakan, E., Sohn, Y.J., Kunz, W., Klemm, H., Vaßen, R.: Effect of processing on high-velocity water vapour recession behaviour of Yb-silicate environmental barrier coatings. J. Eur. Ceram. Soc. 39, 1507–1513 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.048

    Article  CAS  Google Scholar 

  42. Ueno, S., Ohji, T., Lin, H.-T.: Recession behaviour of Yb2Si2O7 phase under high speed steam jet at high temperatures. Corros. Sci. 50, 178–182 (2008). https://doi.org/10.1016/j.corsci.2007.06.014

    Article  CAS  Google Scholar 

  43. Okawa, A., Nguyen, S.T., Wiff, J.P., Son, H.W., Nakayama, T., Hashimoto, H., Sekino, T., Do, T.M.D., Suematsu, H., Suzuki, T., Goto, T., Niihara, K.: Self-healing ability, strength enhancement, and high-temperature oxidation behaviour of silicon carbide-dispersed ytterbium disilicate composite for environmental barrier coatings under isothermal heat treatment. J. Eur. Ceram. Soc. (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.057

    Article  Google Scholar 

  44. Tian, Z., Zhang, J., Sun, L., Zheng, L., Wang, J.: Robust hydrophobicity and evaporation inertness of rare-earth monosilicates in hot steam at very high temperature. J. Am. Ceram. Soc. 102, 3076–3080 (2019). https://doi.org/10.1111/jace.16315

    Article  CAS  Google Scholar 

  45. Lv, X., Cui, J., Zhang, J., Wang, J.: Phase composition and property evolution of (Yb1-xHox)2Si2O7 solid solution as environmental/thermal barrier coating candidates. J. Eur. Ceram. Soc. 36, 2813–2823 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.04.020

    Article  CAS  Google Scholar 

  46. Turcer, L.R., Krause, A.R., Garces, H.F., Zhang, L., Padture, N.P.: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 38, 3905–3913 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.021

    Article  CAS  Google Scholar 

  47. Kim, S.H., Fisher, C.A.J., Nagashima, N., Matsushita, Y., Jang, B.K.: Reaction between environmental barrier coatings material Er2Si2O7 and a calcia-magnesia-alumina-silica melt. Ceram. Int. 48, 17369–17375 (2022). https://doi.org/10.1016/j.ceramint.2022.03.001

    Article  CAS  Google Scholar 

  48. Turcer, L.R., Krause, A.R., Garces, H.F., Zhang, L., Padture, N.P.: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 38, 3914–3924 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.010

    Article  CAS  Google Scholar 

  49. Quintas, A., Caurant, D., Majérus, O., Dussossoy, J.L., Charpentier, T.: Effect of changing the rare earth cation type on the structure and crystallisation behaviour of an aluminoborosilicate glass. Phys. Chem. Glass.: Phys Chem Glasses-B. 49, 192–197 (2008)

    CAS  Google Scholar 

  50. Tian, Z., Zhang, J., Zheng, L., Hu, W., Ren, X., Lei, Y., Wang, J.: General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 °C. Corros. Sci. 148, 281–292 (2019). https://doi.org/10.1016/j.corsci.2018.12.032

    Article  CAS  Google Scholar 

  51. Costa, G., Harder, B.J., Bansal, N.P., Kowalski, B.A., Stokes, J.L.: Thermochemistry of calcium rare-earth silicate oxyapatites. J. Am. Ceram. Soc. 103, 1446–1453 (2020). https://doi.org/10.1111/jace.16816

    Article  CAS  Google Scholar 

  52. Bakan, E., Marcano, D., Zhou, D., Sohn, Y.J., Mauer, G., Vaßen, R.: Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. J. Therm. Spray Technol. 26, 1011–1024 (2017). https://doi.org/10.1007/s11666-017-0574-1

    Article  CAS  Google Scholar 

  53. Richards, B.T., Sehr, S., de Franqueville, F., Begley, M.R., Wadley, H.N.G.: Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure. Acta Mater. 103, 448–460 (2016). https://doi.org/10.1016/j.actamat.2015.10.019

    Article  CAS  Google Scholar 

  54. Richards, B.T., Zhao, H., Wadley, H.N.G.: Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 50, 7939–7957 (2015). https://doi.org/10.1007/s10853-015-9358-5

    Article  CAS  Google Scholar 

  55. Wang, H., Zhang, J., Sun, L., Wang, J.: Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder. Surf Coat Technol. 437, (2022). https://doi.org/10.1016/j.surfcoat.2022.128373

  56. Bakan, E., Sohn, Y.J., Vaßen, R.: Metastable to stable phase transformation in atmospheric plasma sprayed Yb-silicate coating during post-heat treatment. Scr Mater. 225, (2023). https://doi.org/10.1016/j.scriptamat.2022.115169

  57. Arhami, F., ben Ettouil, F., Moreau, C.: As-Sprayed Highly Crystalline Yb2Si2O7 Environmental Barrier Coatings (EBCs) by Atmospheric Plasma Spray (APS). J Therm Spray Technol. (2023). https://doi.org/10.1007/s11666-022-01526-6

  58. Garcia, E., Lee, H., Sampath, S.: Phase and microstructure evolution in plasma sprayed Yb2Si2O7 coatings. J. Eur. Ceram. Soc. 39, 1477–1486 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.018

    Article  CAS  Google Scholar 

  59. Peng, Y., Luo, Z., Wang, H., Du, T., Zhang, J., Sun, L., Wang, J.: Crystallization and phase evolution in novel (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 environmental barrier coating. Int J Appl Ceram Technol. (2022). https://doi.org/10.1111/ijac.14210

  60. Kitahara, T., Mitani, K., Saito, H., Ichikawa, Y., Ogawa, K., Masuda, T.: Improvement in the self-healing property of plasma-sprayed environmental barrier coatings by SiC addition. J Therm Spray Technol. (2022). https://doi.org/10.1007/s11666-022-01441-w

  61. Nguyen, S.T., Takahashi, T., Okawa, A., Suematsu, H., Niihara, K., Nakayama, T.: Improving self-healing ability and flexural strength of ytterbium silicate-based nanocomposites with silicon carbide nanoparticulates and whiskers. J Ceram Soc JAPAN. 129, 209–216 (2021). https://doi.org/10.2109/jcersj2.20179

    Article  CAS  Google Scholar 

  62. Yanaoka, R., Ichikawa, Y., Ogawa, K., Masuda, T., Sato, K.: Fundamental study of suspension plasma sprayed silicate coatings. Mater. Trans. 61, 1390–1395 (2020). https://doi.org/10.2320/matertrans.T-M2020826

    Article  CAS  Google Scholar 

  63. Ryu, H.L., Lee, S.M., Han, Y.S., Choi, K., An, G.S., Nahm, S., Oh, Y.S.: Preparation of crystalline ytterbium disilicate environmental barrier coatings using suspension plasma spray. Ceram. Int. 45, 5801–5807 (2019). https://doi.org/10.1016/j.ceramint.2018.12.048

    Article  CAS  Google Scholar 

  64. Park, S.M., Nahm, S., Oh, Y.S.: Thermal durability of ytterbium silicate environmental barrier coating prepared by suspension plasma spray. J. Korean Ceram. Soc. 58, 192–200 (2021). https://doi.org/10.1007/s43207-020-00086-1

    Article  CAS  Google Scholar 

  65. Chen, D., Pegler, A., Dwivedi, G., de Wet, D., Dorfman, M.: Thermal cycling behaviour of air plasma-sprayed and low-pressure plasma-sprayed environmental barrier coatings. Coatings. 11, (2021). https://doi.org/10.3390/coatings11070868

  66. Chen, D., Pegler, A., Dorfman, M.: Environmental barrier coatings using low pressure plasma spray process. J. Am. Ceram. Soc. 103, 4840–4845 (2020). https://doi.org/10.1111/jace.17199

    Article  CAS  Google Scholar 

  67. Wolf, M., Mack, D.E., Mauer, G., Guillon, O., Vaßen, R.: Crystalline ytterbium disilicate environmental barrier coatings made by high velocity oxygen fuel spraying. Int. J. Appl. Ceram. Technol. 19, 210–220 (2022). https://doi.org/10.1111/ijac.13829

    Article  CAS  Google Scholar 

  68. Bakan, E., Mauer, G., Sohn, Y.J., Koch, D., Vaßen, R.: Application of high-velocity oxygen-fuel (HVOF) spraying to the fabrication of Yb-silicate environmental barrier coatings. Coatings. 7, (2017). https://doi.org/10.3390/coatings7040055

  69. Chen, D.: Suspension HVOF sprayed ytterbium disilicate environmental barrier coatings. J. Therm. Spray Technol. 31, 429–435 (2022). https://doi.org/10.1007/s11666-022-01343-x

    Article  CAS  Google Scholar 

  70. Chen, W., He, W., He, J., Guo, Q., Li, S., Guo, H.: Failure mechanisms of (Gd0.9Yb0.1) 2Zr2O7/Yb2SiO5/Si thermal/environmental barrier coatings during thermal exposure at 1300°C/1400°C. J Eur Ceram Soc. 42, 3297–3304 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.02.023

  71. Lü, K., Dong, S., Huang, Y., Mao, C., Jiang, J., Deng, L., Cao, X.: Thermal shock behaviour of LaMgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer. Surf Coat Technol. 443, (2022). https://doi.org/10.1016/j.surfcoat.2022.128594

  72. Fan, W., Zou, B., Fan, C., Wang, Y., Cai, X., Tao, S., Xu, J., Wang, C., Cao, X., Zhu, L.: Fabrication and oxidation resistant behaviour of plasma sprayed Si/Yb2Si2O7/LaMgAl11O19 coating for Cf/SiC composites at 1673K. Ceram. Int. 43, 392–398 (2017). https://doi.org/10.1016/j.ceramint.2016.09.171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editage (www.editage.jp) for English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayahisa Okawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okawa, A., Nguyen, S.T., Nakayama, T., Suematsu, H., Goto, T., Niihara, K. (2024). Development of Silicates and Spraying Techniques for Environmental Barrier Coatings. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Ceramic Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40809-0_9

Download citation

Publish with us

Policies and ethics