Skip to main content
Log in

Tungsten–potassium: a promising plasma-facing material

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Tungsten–potassium (potassium-doped tungsten or WK), initially known from the electric filament industry, is a promising plasma-facing material (PFM) in future fusion facilities like International Thermonuclear Experimental Reactor (ITER). However, the brittle nature of W and irradiation-induced defects of WK materials may result in a risk of deuterium–tritium reaction failure in fusion reactors. Previous studies revealed that advanced W with ultrafine grains and nanostructures might be able to address these problems. However, K-doped W, a rapidly developed material for PFMs, lacks a systematical summary. In this review, we firstly describe the powder metallurgy and plastic deformation for the preparation of WK. Then, the mechanical properties of WK and thermal shock resistance results are reviewed. Important issues such as irradiation damages from neutron, heavy ion, and plasma (H isotope or He) irradiation are also discussed. Hitherto, WK under irradiations shows comparable or even better performances compared with other counterparts such as ITER grade pure tungsten. This review could be benefitial to the future efforts of improving the ductility and irradiation tolerance of WK materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Ward DJ, Dudarev SL. Economically competitive fusion. Mater Today. 2008;11(12):46.

    Article  CAS  Google Scholar 

  2. Dobran F. Fusion energy conversion in magnetically confined plasma reactors. Prog Nucl Ener. 2012;60(3):89.

    Article  CAS  Google Scholar 

  3. Knaster J, Moeslang A, Muroga T. Materials research for fusion. Nat Phys. 2016;12(5):424.

    Article  CAS  Google Scholar 

  4. Zinkle SJ, Snead LL. Designing radiation resistance in materials for fusion energy. Annu Rev Mater Res. 2014;44(1):241.

    Article  CAS  Google Scholar 

  5. Desecures M, El-Guebaly L, Druyts F, Van Iseghem P, Massaut V, Van Oost G. Study of radioactive inventory generated from W-based components in ITER and PPCS fusion designs. Fusion Eng Des. 2013;88(9–10):2674.

    Article  CAS  Google Scholar 

  6. Hirai T, Escourbiac F, Barabash V, Durocher A, Fedosov A, Ferrand L, Jokinen T, Komarov V, Merola M, Carpentier-Chouchana S, Arkhipov N, Kuznetcov V, Volodin A, Suzuki S, Ezato K, Seki Y, Riccardi B, Bednarek M, Gavila P. Status of technology R&D for the iter tungsten divertor monoblock. J Nucl Mater. 2015;463:1248.

    Article  CAS  Google Scholar 

  7. Pitts RA, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin AS, Loarte A, Merola M, Naik AS, Mitteau R, Sugihara M, Bazylev B, Stangeby PC. A full tungsten divertor for iter: physics issues and design status. J Nucl Mater. 2013;438:S48.

    Article  CAS  Google Scholar 

  8. Ueda Y, Coenen JW, De Temmerman G, Doerner RP, Linke J, Philipps V, Tsitrone E. Research status and issues of tungsten plasma facing materials for iter and beyond. Fusion Eng Des. 2014;89(7–8):901.

    Article  CAS  Google Scholar 

  9. Thummavichai K, Xia YD, Zhu YQ. Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Prog Mater Sci. 2017;88:281.

    Article  CAS  Google Scholar 

  10. Tolias P, Team EM. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl Mater Energy. 2017;13:42.

    Article  Google Scholar 

  11. Ueda Y, Funabiki T, Shimada T, Fukumoto K, Kurishita H, Nishikawa M. Hydrogen blister formation and cracking behavior for various tungsten materials. J Nucl Mater. 2005;337:1010.

    Article  CAS  Google Scholar 

  12. Wang Z, Yuan Y, Arshad K, Wang J, Zhou ZJ, Tang J, Lu GH. Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys. Fusion Eng Des. 2017;125:496.

    Article  CAS  Google Scholar 

  13. Wu YC, Lin JS, Luo LM, Zan X, Zhu XY, Chen JL. Irradiation damage behavior research status of tungsten-matrix materials facing plasma. J Mech Eng. 2017;53(8):25.

    Article  Google Scholar 

  14. Wu YC, Hou QQ, Luo LM, Zan X, Zhu XY, Li P, Xu Q, Cheng JG, Luo GN, Chen JL. Preparation of ultrafine-grained/nanostructured tungsten materials: an overview. J Alloy Compd. 2019;779:926.

    Article  CAS  Google Scholar 

  15. Wurster S, Baluc N, Battabyal M, Crosby T, Du J, Garcia-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz RJ, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You JH, Pippan R. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater. 2013;442(1–3):S181.

    Article  CAS  Google Scholar 

  16. Zhang XX, Yan QZ, Lang ST, Xia M, Ge CC. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten. J Nucl Mater. 2014;452(1–3):257.

    Article  CAS  Google Scholar 

  17. Bewlay BP, Briant CL. The formation and the role of potassium bubbles in NS-doped tungsten. Int J Refract Met Hard. 1995;13(1):137.

    Article  CAS  Google Scholar 

  18. Bewlay BP, Lewis N, Lou KA. Observations on the evolution of potassium bubbles in tungsten ingots during sintering. Metall Trans A. 1992;23(1):121.

    Article  Google Scholar 

  19. Chen LQ, Huang B, Yang XL, Lian YY, Liu X, Tang J. High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys. J Alloy Compd. 2019;780:388.

    Article  CAS  Google Scholar 

  20. Fukuda M, Hasegawa A, Nogami S. Thermal properties of pure tungsten and its alloys for fusion applications. Fusion Eng Des. 2018;132:1.

    Article  CAS  Google Scholar 

  21. Fukuda M, Hasegawa A, Tanno T, Nogami S, Kurishita H. Property change of advanced tungsten alloys due to neutron irradiation. J Nucl Mater. 2013;442(1–3):S273.

    Article  CAS  Google Scholar 

  22. Fukuda M, Tabata T, Hasegawa A, Nogami S, Muroga T. Strain rate dependence of tensile properties of tungsten alloys for plasma-facing components in fusion reactors. Fusion Eng Des. 2016;109:1674.

    Article  CAS  Google Scholar 

  23. Gruger A, Vassen R, Mertens F. The evaporation of potassium during sintering of doped tungsten. Int J Refract Met Hard. 1998;16(1):37.

    Article  CAS  Google Scholar 

  24. Guan WH, Nogami S, Fukuda M, Hasegawa A. Tensile and fatigue properties of potassium doped and rhenium containing tungsten rods for fusion reactor applications. Fusion Eng Des. 2016;109:1538.

    Article  CAS  Google Scholar 

  25. He B, Huang B, Xiao Y, Lian YY, Liu X, Tang J. Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy. J Alloy Compd. 2016;686:298.

    Article  CAS  Google Scholar 

  26. Huang B, He B, Xiao Y, Ang R, Yang JJ, Liao JL, Yang YY, Liu N, Pan D, Tang J. Microstructure and bubble formation of Al–K–Si doped tungsten prepared by spark plasma sintering. Int J Refract Met Hard. 2016;54:335.

    Article  CAS  Google Scholar 

  27. Dong LL, Chen WG, Hou LT, Wang JJ, Song JL. Metallurgical and mechanical examinations of molybdenum/graphite joints by vacuum arc pressure brazing using Ti–Zr filler materials. J Mater Process Tech. 2017;249:39.

    Article  CAS  Google Scholar 

  28. Nogami S, Guan WH, Fukuda M, Hasegawa A. Effect of microstructural anisotropy on the mechanical properties of K-doped tungsten rods for plasma facing components. Fusion Eng Des. 2016;109(B):1549.

    Article  CAS  Google Scholar 

  29. Nogami S, Noto H, Toyota M, Hattori T, Otomo K, Hasegawa A. Solid state diffusion bonding of doped tungsten alloys with different thermo-mechanical properties. Fusion Eng Des. 2018;136:76.

    Article  CAS  Google Scholar 

  30. Ogawa T, Hasegawa A, Kurishita H, Nogami S. Improvement of surface exfoliation behavior by helium-ion bombardment of a tungsten alloy fabricated by mechanical alloying. J Nucl Sci Technol. 2009;46(7):717.

    Article  CAS  Google Scholar 

  31. Pintsuk G, Uytdenhouwen I. Thermo-mechanical and thermal shock characterization of potassium doped tungsten. Int J Refract Met Hard. 2010;28(6):661.

    Article  CAS  Google Scholar 

  32. Sheng H, Uytdenhouwen I, Van Oost G, Vleugels J. Mechanical properties and microstructural characterizations of potassium doped tungsten. Nucl Eng Des. 2012;246:198.

    Article  CAS  Google Scholar 

  33. Tan XY, Li P, Luo LM, Chen HY, Zan X, Zhu XY, Luo GN, Wu YC. Effect of mechanical milling on the microstructure of tungsten under He+ irradiation condition. Fusion Eng Des. 2015;100:571.

    Article  CAS  Google Scholar 

  34. Terentyev D, Riesch J, Lebediev S, Bakaeva A, Coenen JW. Mechanical properties of as-fabricated and 2300 °C annealed tungsten wire tested up to 600 °C. Int J Refract Met Hard. 2017;66:127.

    Article  CAS  Google Scholar 

  35. Terentyev D, Van Renterghem W, Tanure L, Dubinko A, Riesch J, Lebediev S, Khvan T, Verbeken K, Coenen JW, Zhurkin EE. Correlation of microstructural and mechanical properties of K-doped tungsten fibers used as reinforcement of tungsten matrix for high temperature applications. Int J Refract Met Hard. 2019;79:204.

    Article  CAS  Google Scholar 

  36. Stork D, Agostini P, Boutard JL, Buckthorpe D, Diegele E, Dudarev SL, English C, Federici G, Gilbert MR, Gonzalez S, Ibarra A, Linsmeier C, Li Puma A, Marbach G, Morris PF, Packer LW, Raj B, Rieth M, Tran MQ, Ward DJ, Zinkle SJ. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J Nucl Mater. 2014;455(1–3):277.

    Article  CAS  Google Scholar 

  37. Zinkle SJ, Snead LL. Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations. Scr Mater. 2018;143:154.

    Article  CAS  Google Scholar 

  38. Huang B, Xiao Y, He B, Yang JJ, Liao JL, Yang YY, Liu N, Lian YY, Liu X, Tang J. Effect of potassium doping on the thermal shock behavior of tungsten. Int J Refract Met Hard. 2015;51:19.

    Article  CAS  Google Scholar 

  39. Xiao Y, Huang B, He B, Shi K, Chen L, Lian YY, Liu X, Tang J. Surface morphology and microstructure evolution of trace titanium and yttrium in W–K–Mo–Ti–Y alloys under transient heat loads. Int J Refract Met Hard Mater. 2018;75:299.

    Article  CAS  Google Scholar 

  40. Abdou M, Morley NB, Smolentsev S, Ying A, Malang S, Rowcliffe A, Ulrickson M. Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng Des. 2015;100:2.

    Article  CAS  Google Scholar 

  41. Khripunov BI, Koidan VS, Ryazanov AI, Gureev VM, Kornienko SN, Latushkin ST, Rupyshev AS, Semenov EV, Kulikauskas VS, Zatekin VV. Study of tungsten as a plasma-facing material for a fusion reactor. Phys Procedia. 2015;71:63.

    Article  CAS  Google Scholar 

  42. Nygren RE, Tabarés FL. Liquid surfaces for fusion plasma facing components—a critical review. Part I: physics and PSI. Nucl Mater Energy. 2016;9:6.

    Article  Google Scholar 

  43. Liu X, Li X, Li H, Wu HB. Recent progress of hybrid solid-state electrolytes for lithium batteries. Chemistry. 2018;24(69):18293.

    Article  CAS  Google Scholar 

  44. Rieth M, Dudarev SL, de Vicente SMG, Aktaa J, Ahlgren T, Autusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, Garcia-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatzj B, Greuner H, Heinola K, Hoschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, Lopez-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Munoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordas N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosinski M, Sanchez M, Schulmeyer W, Traxler H, Urena A, van der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater. 2013;432(1–3):482.

    Article  CAS  Google Scholar 

  45. Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga BP. Defect-interface interactions. Prog Mater Sci. 2015;74:125.

    Article  CAS  Google Scholar 

  46. Yoshida N. Review of recent works in development and evaluation of high-Z plasma facing materials. J Nucl Mater. 1999;269(1):197.

    Article  Google Scholar 

  47. Eckert ERG, Goldstein RJ, Ibele WE, Simon TW, Kuehn TH, Strykowski PJ, Tamma KK, Bar-Cohen A, Heberlein JVR, Davidson JH, Bischof JC, Kulacki F, Kortshagen U. Heat transfer—a review of 1996 literature. Int J Heat Mass Transf. 2000;43(8):1273.

    Article  Google Scholar 

  48. Weckmann A, Petersson P, Rubel M, Strom P, Kurki-Suonio T, Sarkimaki K, Kirschner A, Kreter A, Brezinsek S, Romazanov J, Wienhold P, Pospieszczyk A, Hakola A, Airila M. Review on global migration, fuel retention, and modelling after textor decommission. Nucl Mater Energy. 2018;17:83.

    Article  Google Scholar 

  49. Hammond KD. Helium, hydrogen, and fuzz in plasma-facing materials. Mater Res Express. 2017;4:104002.

    Article  CAS  Google Scholar 

  50. Philipps V. Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater. 2011;415:S2.

    Article  CAS  Google Scholar 

  51. Schade P. 100 years of doped tungsten wire. Int J Refract Met Hard. 2010;28:648.

    Article  CAS  Google Scholar 

  52. Huang B, Tang J, Chen LQ, Yang XL, Lian YY, Chen L, Liu X, Cui XD, Gu L, Liu CT. Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. J Alloy Compd. 2019;782:149.

    Article  CAS  Google Scholar 

  53. Nayy A. Van der waals gas model for potassium in tungsten. Int J Refract Met Hard Mater. 1998;16(1):45.

    Article  Google Scholar 

  54. Schade P. Potassium bubble growth in doped tungsten. Int J Refract Met Hard Mater. 1998;16(1):77.

    Article  CAS  Google Scholar 

  55. Nikolić V, Riesch J, Pfeifenberger MJ, Pippan R. The effect of heat treatments on pure and potassium doped drawn tungsten wires: part II—fracture properties. Mater Sci Eng A Struct. 2018;737:434.

    Article  CAS  Google Scholar 

  56. Nikolić V, Riesch J, Pippan R. The effect of heat treatments on pure and potassium doped drawn tungsten wires: part I—microstructural characterization. Mater Sci Eng A Struct. 2018;737:422.

    Article  CAS  Google Scholar 

  57. Riesch J, Han Y, Almanstötter J, Coenen JW, Höschen T, Jasper B, Zhao P, Linsmeier C, Neu R. Development of tungsten fibre-reinforced tungsten composites towards their use in demo—potassium doped tungsten wire. Phys Scr. 2016;T167:014006.

    Article  CAS  Google Scholar 

  58. Sasaki K, Yabuuchi K, Nogami S, Hasegawa A. Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten. J Nucl Mater. 2015;461:357.

    Article  CAS  Google Scholar 

  59. Sheng H, Van Oost G, Zhurkin E, Terentyev D, Dubinko VI, Uytdenhouwen I, Vleugels J. High temperature strain hardening behavior in double forged and potassium doped tungsten. J Nucl Mater. 2014;444:214.

    Article  CAS  Google Scholar 

  60. Shu XY, Huang B, Liu DP, Fan HY, Liu N, Tang J. Effects of low energy helium plasma irradiation on potassium doped tungsten. Fusion Eng Des. 2017;117:8.

    Article  CAS  Google Scholar 

  61. Shu XY, Huang B, Yang J, Liu D, Fan H, Liao J, Yang Y, Liu N, Tang J. Fabrication and helium irradiation of potassium-doped tungsten. Fusion Sci Technol. 2017;66:278.

    Article  CAS  Google Scholar 

  62. Shu XY, Qiu HX, Huang B, Gu ZX, Yang JJ, Liao JL, Yang YY, Liu N, Tang J. Preparation and characterization of potassium doped tungsten. J Nucl Mater. 2013;440:414.

    Article  CAS  Google Scholar 

  63. Terentyev D, Riesch J, Lebediev S, Khvan T, Zinovev A, Rasiński M, Dubinko A, Coenen JW. Plastic deformation of recrystallized tungsten-potassium wires: constitutive deformation law in the temperature range 22–6000 °C. Int J Refract Met Hard Mater. 2018;73:38.

    Article  CAS  Google Scholar 

  64. Xiao Y, Huang B, He B, Shi K, Lian YY, Liu X, Tang J. Effect of molybdenum doping on the microstructure, micro-hardness and thermal shock behavior of W–K–Mo–Ti–Y alloy. J Alloy Compd. 2016;678:533.

    Article  CAS  Google Scholar 

  65. Shi K, Huang B, He B, Xiao Y, Chen L, Lian YY, Liu X, Tang J. Recrystallization behavior after annealing and thermal shock tests of W–K–TiC alloy. Fusion Eng Des. 2017;122:223.

    Article  CAS  Google Scholar 

  66. Shi K, Huang B, He B, Xiao Y, Yang XL, Lian YY, Liu X, Tang J. Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W–K–TiC alloys. Nucl Eng Technol. 2019;51:190.

    Article  CAS  Google Scholar 

  67. Ding XY, Luo LM, Huang LM, Luo GN, Zhu XY, Cheng JG, Wu YC. Preparation of TiC/W core-shell structured powders by one-step activation and chemical reduction process. J Alloy Compd. 2015;619:704.

    Article  CAS  Google Scholar 

  68. Krstic PS, Allain JP, Dominguez-Gutierrez FJ, Bedoya F. Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions. Matter Radiat Extrem. 2018;3:165.

    Article  Google Scholar 

  69. Feng PQ, Zhu XZ, Ma XR, Li J. Performance and application of shock-resistance tungsten wire. China Tungsten Ind. 2002;17(6):34.

    Google Scholar 

  70. Yang SM, Fan JL. Discussion on strengthening mechanism of lanthanum, cerium, yttrium, rhenium, potassium on tungsten materials. Cem Carbide. 2015;32(1):19.

    Google Scholar 

  71. Luo LM, Huang K, Yan X, Zhu XY, Li P, Wu YC. Research and development of alloy modified tungsten-based materials. J Mech Eng. 2018;54:12.

    Google Scholar 

  72. Wu YC, Yao G, Luo LM, Zan X, Zhu XY, Li P, Cheng JH. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor. China J Nonferrous Met. 2018;28(4):81.

    Google Scholar 

  73. Huang B, Chen LQ, Qiu WB, Yang XL, Shi K, Lian YY, Liu X, Tang J. Correlation between the microstructure, mechanical/thermal properties, and thermal shock resistance of K-doped tungsten alloys. J Nucl Mater. 2019;520:6.

    Article  CAS  Google Scholar 

  74. Tang J, Yang XL, Chen LQ. Research on self-ion irradiated WK alloy. The 5th nuclear fusion reactor materials forum, Changsha, China, 2018.

  75. Nogami S, Guan WH, Hattori T, James K, Hasegawa A. Improved structural strength and lifetime of monoblock divertor targets by using doped tungsten alloys under cyclic high heat flux loading. Phys Scr. 2017;T170:014011.

    Article  CAS  Google Scholar 

  76. Zhang XX, Yan QZ. The thermal crack characteristics of rolled tungsten in different orientations. J Nucl Mater. 2014;444:428.

    Article  CAS  Google Scholar 

  77. Pintsuk G, Kuhnlein W, Linke J, Rodig M. Investigation of tungsten and beryllium behaviour under short transient events. Fusion Eng Des. 2007;82:1720.

    Article  CAS  Google Scholar 

  78. Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Rodig M, Schmidt A, Thomser C, Uytdenhouwen I, Vasechko V, Wirtz M. Performance of different tungsten grades under transient thermal loads. Nucl Fusion. 2011;51:073017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11775149 and 11475118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Qiu, W., Chen, L. et al. Tungsten–potassium: a promising plasma-facing material. Tungsten 1, 141–158 (2019). https://doi.org/10.1007/s42864-019-00018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00018-5

Keywords

Navigation