Skip to main content

Advertisement

Log in

microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations

  • review
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bologna NG, SchapireAL PalatnikJF (2012) Processing of plant microRNA precursors. Brief Funct Genom 12:37–45. doi:10.1093/bfgp/els050

    Article  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  3. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditiselegans. Nature 403:901–906. doi:10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Wei GH, Liu DP, Liang CC (2007) Unravelling the world of cis-regulatory elements. Med Biol Eng Comput 45(8):709–718

    Article  PubMed  Google Scholar 

  6. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditiselegans. Science 294:858–862. doi:10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  7. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36. doi:10.1016/S0092-8674(03)00231-9

    Article  CAS  PubMed  Google Scholar 

  8. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila MicroRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795. doi:10.1016/S0960-9822(03)00250-1

    Article  CAS  PubMed  Google Scholar 

  9. Kloosterman WP, Plasterk RH (2006) The diverse functions of MicroRNAs in animal development and disease. Dev Cell 11:441–450. doi:10.1016/j.devcel.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  10. Eckardt NA (2012) A microRNA cascade in plant defense. Plant Cell 24:840. doi:10.1105/tpc.112.240311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marti D, Jansson AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610. doi:10.1016/j.molonc

    Article  Google Scholar 

  12. Sassen S, Miska EA, Caldas C (2008) MicroRNA—implications for cancer. Virchows Arch 452:1–10. doi:10.1007/s00428-007-0532-2

    PubMed  Google Scholar 

  13. Rothschild SI (2014) microRNA therapies in cancer. Mol Cell Ther 2:1–7. doi:10.1186/2052-8426-2-7

    Article  Google Scholar 

  14. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20. doi:10.1007/978-94-007-5590-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99:15524–15529. doi:10.1073/pnas.242606799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2010) A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle 9:1037–1042. doi:10.4161/cc.9.6.11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu L, Kris VK (2012) MicroRNAs in common human diseases. Genom Proteom Bioinform 10:246–253. doi:10.1016/j.gpb.2012.07.005

    Article  Google Scholar 

  18. Singh Y, Kaul V, Mehara A et al (2013) Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J Biol Chem 288:5056–5061. doi:10.1074/jbc.C112.439778

    Article  CAS  PubMed  Google Scholar 

  19. Duskova K, Nagilla P, Le HS, Iyer P, Thalamuthu A et al (2013) MicroRNA regulation and its effects on cellular transcriptome in human immunodeficiency virus-1 (HIV-1) infected individuals with distinct viral load and CD4 cell counts. BMC Infect Dis 13:250. doi:10.1186/1471-2334-13-250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts AP, Lewis AP, Jopling CL (2011) The role of MicroRNAs in viral infection. Prog Mol Biol Transl Sci 102:101–139. doi:10.1016/B978-0-12-415795-8.00002-7

    Article  CAS  PubMed  Google Scholar 

  21. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122. doi:10.1038/nri2708

    Article  PubMed  Google Scholar 

  22. Weinberg MS, Wood MJ (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18:R27–R39. doi:10.1093/hmg/ddp070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265. doi:10.3389/fncel.2013.00265

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nelson PT, Wang XW, Bernard WR (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138. doi:10.1111/j.1750-3639.2007.00120.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bauersachs J, Thomas T (2011) Biogenesis and regulation of cardiovascular microRNAs. Circ Res 109:334–347. doi:10.1161/CIRCRESAHA.110.228676

    Article  CAS  PubMed  Google Scholar 

  26. Thum T, Manuel M (2012) Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res 93:543–544. doi:10.1093/cvr/cvs085

    Article  CAS  PubMed  Google Scholar 

  27. Almeida MI, Reis RM, Calin GA (2011) MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 717:1–8. doi:10.1016/j.mrfmmm.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  28. Liang H, Zen K, Zhang J, Zhang CY, Chen X (2013) New roles for microRNAs in cross-species communication. RNA Biol 10(3):1–4. doi:10.4161/rna.23663

    Article  CAS  Google Scholar 

  29. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi:10.1146/annurev.arplant.57.032905.105218

    Article  CAS  PubMed  Google Scholar 

  30. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54(3):482–490. doi:10.1373/clinchem.2007.097972

    Article  CAS  PubMed  Google Scholar 

  31. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as biomarker of myocardial injury. Clin Chem 559:1944–1949. doi:10.1373/clinchem.2009.125310

    Article  Google Scholar 

  32. Torrezan GT, Ferreira EN, Nakahata AM et al (2014) Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5:4093. doi:10.1038/ncomms5039

    Google Scholar 

  33. Brousse C, Liu Q, Beauclair L et al (2014) A non-canonical plant microRNA target site. Nucleic Acids Res 41(8):5270–5279. doi:10.1093/nar/gku157

    Article  Google Scholar 

  34. Contrant M, Fender A, Chane WM et al (2014) Importance of the RNA secondary structure for the relative accumulation of clustered viral microRNAs. Nucleic Acids Res 42:7981–7996. doi:10.1093/nar/gku424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111. doi:10.1093/nar/gkh023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi:10.1093/nar/gkj112

    Article  CAS  PubMed  Google Scholar 

  37. Altaf M, Waqar A, John P, Sadia H, Iqbal T, Bhatti A (2013) miRNA databases: an investigation of regulatory RNAs informatics. Int J Sci Eng Res 4:517–520

    Google Scholar 

  38. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight. Nat Rev Genet 9:102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  39. Kelley M, Birmingham A, Karpilow J, Khvorova A, Sullivan K, inventors (2014) Micro-RNA scaffolds, non-naturally occurring micro-RNAs, and methods for optimizing non-naturally occurring micro-RNAs. United States patent US US8841267 B2

  40. Reinhart BJ, Weinstein EG, Rhoades MW et al (2003) MicroRNAs in plants. Genes Dev 16:1616–1626. doi:10.1101/gad.1004402

    Article  Google Scholar 

  41. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369. doi:10.1038/nrg3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baker M (2010) MicroRNA profiling: separating signal from noise. Nat Methods 7:687–692. doi:10.1038/nmeth0910-687

    Article  CAS  PubMed  Google Scholar 

  43. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. doi:10.1186/1741-7007-9-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Llandro J, Palfreyman JJ, Ionescu A, Barnes CH (2010) Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput 48:977–998

    Article  CAS  PubMed  Google Scholar 

  45. Chugh P, Dirk PD (2012) Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 3:601–616. doi:10.1002/wrna.1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Redshaw N, Wilkes T, Whale A, Cowen S, Huggett J, Foy CA (2013) A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. Biotechniques 54:155–164. doi:10.2144/000114002

    Article  CAS  PubMed  Google Scholar 

  47. Belean B, Terebes R, Bot A (2015) Low-complexity PDE-based approach for automatic microarray image processing. Med Biol Eng Comput 53(2):99–110

    Article  PubMed  Google Scholar 

  48. Lu J, Getz G, Miska EA, Alvarez-Saavedra E (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  49. Sui W, Liu F, Chen J, Ou M, Dai Y (2014) Microarray technology for analysis of microRNA expression in renal biopsies of lupus nephritis patients. Methods Mol Biol 1134:211–220. doi:10.1007/978-1-4939-0326-9_16

    Article  CAS  PubMed  Google Scholar 

  50. Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L et al (2013) Transcriptome profiling of microRNA by next-gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE 8:e50564. doi:10.1371/journal.pone.0050564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Creighton CJ, Jeffrey GR, Preethi HG (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10:490–497. doi:10.1093/bib/bbp019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16:2170–2180. doi:10.1261/rna.2225110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Z, Lee JE, Riemondy K, Anderson EM, Yi R (2013) High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol 14:R109. doi:10.1186/gb-2013-14-10-r109

    Article  PubMed  PubMed Central  Google Scholar 

  54. He CY, Cui K, Zhang JG, Duan AG, Zeng YF (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol 13:119. doi:10.1186/1471-2229-13-119

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang QX, Cheng XY, Mao ZC, Wang YS, Zhao LL, Yan X, Ferris VR, Xu RM, Xie BY (2010) MicroRNA discovery and analysis of pinewood nematode Bursaphelenchusxylophilus by deep sequencing. PLoS ONE. doi:10.1371/journal.pone.0013271

    Google Scholar 

  56. Kleftogiannis D, Korfiati A, Theofilatos K, Likothanassis S, Tsakalidis A, Mavroudi S (2013) Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. J Biomed Inform 46:563–573. doi:10.1016/j.jbi.2013.02.002

    Article  PubMed  Google Scholar 

  57. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi:10.1093/nar/gkt1181

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sheng DH, Chia HC, Ann PT et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36:D165–D169. doi:10.1093/nar/gkm1012

    Google Scholar 

  59. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2013) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074. doi:10.1093/nar/gkt1023

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS ONE 3(10):e3420. doi:10.1371/journal.pone.0003420

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. doi:10.1093/nar/gkn714

    Article  CAS  PubMed  Google Scholar 

  62. Maselli V, Bernardo D, Banfi S (2008) CoGemiR: a comparative genomics microRNA database. BMC Genom 9:457. doi:10.1186/1471-2164-9-457

    Article  Google Scholar 

  63. Panagiotis A, Thanasis V, Martin G et al (2010) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38:D137–D141. doi:10.1093/nar/gkp888

    Article  Google Scholar 

  64. Yang JH, Shao P, Zhou H, Chen YQ, Qu LH (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 38:D123–D130. doi:10.1093/nar/gkp943

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813. doi:10.1093/nar/gkp818

    Article  CAS  PubMed  Google Scholar 

  66. Agarwal SM, Raghav D, Singh H, Raghava GP (2011) CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 39:D975–D979. doi:10.1093/nar/gkq1024

    Article  CAS  PubMed  Google Scholar 

  67. Sarver AL, Phalak R, Thayanithy V, Subramanian S (2010) S-MED: sarcoma microRNA expression database. Lab Investig 19:753–761. doi:10.1038/labinvest.2010.53

    Article  Google Scholar 

  68. Hiard S, Charlier C, Coppieters W, Georges M, Baurain D (2009) Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Res 38:D640–D651. doi:10.1093/nar/gkp926

    Article  PubMed  PubMed Central  Google Scholar 

  69. Michał WS, Izabela M (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77. doi:10.1093/nar/gkt1156

    Article  Google Scholar 

  70. Ruepp A, Andreas K, Daniel S et al (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11:R6. doi:10.1186/gb-2010-11-1-r6

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schmeier S, Schaefer U, MacPherson CR et al (2011) dPORE-miRNA: polymorphic regulation of microRNA genes. PLoS ONE. doi:10.1371/journal.pone.0016657

    Google Scholar 

  72. Bhartiya D, Laddha SV, Mukhopadhyay A, Scaria V (2011) miRvar: a comprehensive database for genomic variations in microRNAs. Hum Mutat 32:E2226–E2245. doi:10.1002/humu.21482

    Article  CAS  PubMed  Google Scholar 

  73. Yang Q, Qiu C, Yang J, Wu Q, Cui Q (2011) miREnvironment database: providing a bridge for microRNAs, environmental factors, and phenotypes. Bioinformatics 27:3329–3330. doi:10.1093/bioinformatics/btr556

    Article  CAS  PubMed  Google Scholar 

  74. Qiu C, Chen G, Cui Q (2012) Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep 2:318. doi:10.1038/srep00318

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu H, Jin T, Liao R, Wan L, Xu B, Zhou S, Guan J (2012) miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations. BMC Plant Biol 12:68. doi:10.1186/1471-2229-12-68

    Article  PubMed  PubMed Central  Google Scholar 

  76. Russo F, Di Bella S, Nigita G, Macca V, Laganà A (2012) miRandola: extracellular circulating microRNAs database. PLoS ONE 7:e47786. doi:10.1371/journal.pone.0047786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olejniczak M, Galka-Marciniak P, Polak K, Fligier A, Krzyzosiak WJ (2012) RNAimmuno: a database of the nonspecific immunological effects of RNA interference and microRNA reagents. RNA 18:930–935. doi:10.1261/rna.025627.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W (2013) SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 29:409–411. doi:10.1093/bioinformatics/bts698

    Article  CAS  PubMed  Google Scholar 

  79. Bhattacharya A, Ziebarth JD, Cui Y (2013) A database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 41:D977–D982. doi:10.1093/nar/gks1138

    Article  CAS  PubMed  Google Scholar 

  80. Dong L, Luo M, Wang F, Zhang J, Li T, Yu J (2013) TUMIR: an experimentally supported database of microRNA deregulation in various cancers. J Clin Bioinform 3:7. doi:10.1186/2043-9113-3-7

    Article  CAS  Google Scholar 

  81. Khurana R, Verma VK, Abdul R (2014) OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer. BMC Bioinform 15:15. doi:10.1186/1471-2105-15-15

    Article  Google Scholar 

  82. Xie B, Ding Q, Han H, Wu D (2013) miRCancer: a microRNA–cancer association database constructed by text mining on literature. Bioinformatics 29:638–644. doi:10.1093/bioinformatics/btt014

    Article  CAS  PubMed  Google Scholar 

  83. Xie B, Hochberg R, Ding Q, WuD (2010) MIRSAT & MIRCDB: an integrated microRNA sequence analysis tool and a cancer-associated microRNA database. In: International conference on bioinformatics and computational biology, Honolulu, Hawaii, pp 159–164

  84. Andrés-León E, González Pena D, Gómez-López G, Pisano DG (2015) miRGate: a curated database of human, mouse and rat miRNA–mRNA targets. Database 2015:bav035. doi:10.1093/database/bav035

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.K. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations. Interdiscip Sci Comput Life Sci 9, 357–377 (2017). https://doi.org/10.1007/s12539-016-0166-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0166-7

Keywords

Navigation