Skip to main content
Log in

Identification of Potential PPAR γ Agonists as Hypoglycemic Agents: Molecular Docking Approach

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor gamma (PPAR γ) has become an attractive molecular target for drugs that aim to treat hyperglycemia. The object of our study is to identify the required molecular descriptor and essential amino acid residues for effective PPAR γ agonistic activity. In this work, we employed Molegro Virtual Docker program in all molecular docking simulations. Accuracy of receptor-compound docking was validated on a set of 15 PPAR γ-compound complexes for which crystallographic structures were available. The reliability of the docking results was acceptable with good root-mean-square deviation value (<2 Å). A significant correlation between different data derived from docking calculations and experimental data was revealed. Our results allowed identification of compounds with potential to become drugs against hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Home P (1994) Prevention of diabetes mellitus. World Health Organization Technical Report Series, vol 844, p 100

  2. Lernmark A, Ott J (1998) Sometimes it’s hot. Sometimes it’s not. Nat Genet 19:213

    Article  CAS  PubMed  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes. Diabetes Care 27:1047

    Article  PubMed  Google Scholar 

  4. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649

    CAS  PubMed  Google Scholar 

  5. Henke BR (2004) Peroxisome proliferator-activated receptor α/γ dual agonists for the treatment of type 2 diabetes. J Med Chem 47(17):4118

    Article  CAS  PubMed  Google Scholar 

  6. Leach AR, Harren J (2007) Structure-based drug discovery. Springer, Berlin, p 4020

    Google Scholar 

  7. Willson TM, Brown PJ, Sternbach DD, Henke R (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43(4):527

    Article  CAS  PubMed  Google Scholar 

  8. Peitsch MC (2004) Discusses knowledge management and informatics in drug discovery. Drug Discov Today BIOCILICO 2:94

    Article  Google Scholar 

  9. Straatsma TP, Mccammon JA (1991) Theoretical calculations of relative affinities of binding. Methods Enzymol 202:497

    Article  CAS  PubMed  Google Scholar 

  10. Iwata Y, Miyamoto S, Takamura M, Yanagisawa H, Kasuya A (2001) Interaction between peroxisome proliferator-activated receptor γ and its agonists: docking study of oximes having 5-benzyl-2,4 thiazolidinedione. J Mol Graph Model 19:536

    Article  CAS  PubMed  Google Scholar 

  11. Han HO, Kim SH, Kim KH, Hur GC, Yim HJ, Chung HK, Woo SH, Koo K, Lee CS, Koh JS, Kim GT (2007) Design and synthesis of oxime ethers of alpha-acyl-beta-phenylpropanoic acids as PPAR dual agonists. Bioorg Med Chem Lett 17:937

    Article  CAS  Google Scholar 

  12. Boobbyer DN, Goodford PJ, McWhinnie PM, Wade RC (1989) New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. J Med Chem 32:1083

    Article  CAS  PubMed  Google Scholar 

  13. Guido RV, Oliva G, Andricopulo AD (2008) Virtual screening and its integration with modern drug design technologies. Curr Med Chem 15(1):37

    Article  CAS  PubMed  Google Scholar 

  14. Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65:213

    Google Scholar 

  15. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151

    Article  CAS  PubMed  Google Scholar 

  16. Yoon S, Smellie A, Hartsough D, Filikov A (2005) Surrogate docking: structure-based virtual screening at high throughput speed. J Comput Aided Mol Des 19(7):483

    Article  CAS  PubMed  Google Scholar 

  17. Yadav PK, Singh G, Gautam B, Singh S, Yadav M, Srivastav U, Singh B (2013) Molecular modeling, dynamics studies and virtual screening of fructose 1,6 biphosphate aldolase-II in community acquired- methicillin resistant Staphylococcus aureus (CA-MRSA). Bioinformation 9(3):158–164

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eisenberg D, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319:199

    Article  CAS  PubMed  Google Scholar 

  19. Forli S, Olson AJ (2012) A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J Med Chem 55:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu Y, Wang R, Yang CY, Wang S (2007) Analysis of ligand-bound water molecules in high resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47:668

    Article  CAS  PubMed  Google Scholar 

  21. Moitessier N, Westhof E, Hanessian S (2006) Docking of aminoglycosides to hydrated and flexible RNA. J Med Chem 49:1023

    Article  CAS  PubMed  Google Scholar 

  22. Pearlman DA, Connelly PR (1995) Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and Tyr82–Phe82 FKBP-12 proteins using free energy simulations. J Mol Biol 248:696

    Article  CAS  PubMed  Google Scholar 

  23. Huang N, Shoichet BK (2008) Exploiting ordered waters in molecular docking. J Med Chem 51:4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lie MA, Thomsen R, Pedersen CNS, Schiøtt B, Christensen MH (2011) Molecular docking with ligand attached water molecules. J Chem Inf Model 51:909

    Article  CAS  PubMed  Google Scholar 

  25. Roberts BC, Mancera RL (2008) Ligand-protein docking with water molecules. J Chem Inf Model 48:397

    Article  CAS  PubMed  Google Scholar 

  26. Sanner MF, Python A (1999) A programming language for software integration and development. J Mol Graph Model 17:57

    CAS  PubMed  Google Scholar 

  27. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315

    Article  CAS  PubMed  Google Scholar 

  28. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-I protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317

    Article  CAS  PubMed  Google Scholar 

  29. Gehlhaar DK, Bouzida D, Rejto PA (1998) Fully automated and rapid flexible docking of inhibitors covalently bound to serine proteases. In: Evolutionary programming VII, proceedings of the seventh international conference on evolutionary programming. Springer, Berlin, p 449

  30. Yang Y, Lee HS, Choi J, Kufareva I, Abagyan R, Filikov A, Yoon S (2008) Optimization of high throughput virtual screening by combining shape-matching and docking methods. J Chem Inf Model 48(3):483

    Google Scholar 

  31. De Azevedo Jr WF (2010) Structure-based virtual screening. Curr Drug Targets 11:261–263

    Article  Google Scholar 

  32. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) Diverse high quality test set for the validation of protein-ligand docking performance. J Med Chem 50:726

    Article  CAS  PubMed  Google Scholar 

  33. Thilagavathi R, Mancera RL (2010) Ligand-protein cross docking with water molecules. J Chem Inf Model 50(3):415

    Article  CAS  PubMed  Google Scholar 

  34. Yang JM (2004) Development and evaluation of a generic evolutionary method for protein-ligand docking. J Comput Chem 25:843

    Article  CAS  PubMed  Google Scholar 

  35. Molegro Virtual Docker (2012) Docking scoring function. User Manual, version 5.5, Molegro Bioinformatics, Aarchus C, Denmark

Download references

Acknowledgments

We are grateful to school of pharmacy, DAVV, Indore, for providing facilities for this work. We are also thankful to Dr. Rene Thomen and to Molegro ApS, Denmark, for giving us the possibility of using the trial version of MVD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, G.P., Sharma, R. Identification of Potential PPAR γ Agonists as Hypoglycemic Agents: Molecular Docking Approach. Interdiscip Sci Comput Life Sci 8, 220–228 (2016). https://doi.org/10.1007/s12539-015-0126-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0126-7

Keywords

Navigation