Skip to main content
Log in

Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide \((\hbox {H}_{2}\hbox {O}_{2})\), potassium cyanide, sodium dodecyl sulfate (SDS), \(\beta\)-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD–SDS and \(\hbox {SOD}{-}\hbox {H}_{2}\hbox {O}_{2}\) complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adachi T, Yamazaki N, Tasaki H, Toyokawa T, Yamashita K, Hirano K (1998) Changes in the heparin affinity of extracellular-superoxide dismutase in patients with coronary artery atherosclerosis. Biol Pharm Bull 21:1090–1093

    Article  CAS  PubMed  Google Scholar 

  2. Djalali M, Abtahi H, Sadeghi MR, Negahdar M, Layegh H, Farzamie B, Fatehi F (2005) A new method for the purification of Cu–Zn superoxide dismutase from human erythrocytes. Iran J Publ Health 34:58–66

    CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC (2008) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  4. Ken C, Lin C, Shaw J, Wu J (2003) Characterization of fish Cu/Zn-superoxide dismutase and its protection from oxidative stress. Mar Biotechnol 5:167–173

    Article  CAS  PubMed  Google Scholar 

  5. Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151:142–151

    Google Scholar 

  6. Paital B, Chainy GBN (2013b) Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol Environ Saf 87:33–41

    Article  CAS  PubMed  Google Scholar 

  7. Paital B (2013) Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; Role of mitochondrial electron transport chain. Ecotoxicol Environ Saf 95:69–77

    Article  CAS  PubMed  Google Scholar 

  8. Paital B (2014) Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress. J Comp Physiol B 184:65–76

    Article  CAS  PubMed  Google Scholar 

  9. Yabe Y, Nishikawa M, Tamada A, Takakura Y, Hashida M (1999) Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase derivatives. J Pharmacol Exp Ther 289:1176–1184

    CAS  PubMed  Google Scholar 

  10. Khazaei M, Moien-Afshari F, Elmi S, Mirdamadi A, Laher I (2009) The effects of diethyldithiocarbamate, a SOD inhibitor, on endothelial function in sedentary and exercised db/db mice. Pathophysiology 16:15–18

    Article  CAS  PubMed  Google Scholar 

  11. Kroll JS, Langford PR, Loynds BM (1991) Copper–Zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bactriol 173:7449–7457

    CAS  Google Scholar 

  12. Brouwer M, Brouwer TH, Grater W, Enghild JJ, Thogersen IB (1997) The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn- superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods. Biochem 36:13381–13388

    Article  CAS  Google Scholar 

  13. Brouwer M, Brouwer TH, Grater W, Brown-Peterson N (2003) Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5:363–369

    Article  CAS  PubMed  Google Scholar 

  15. Chelikani P, Fitab I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  16. Switala J, Loewen PC (2002) Diversity of properties among catalases. Arch Biochem Biophys 401:145–154

    Article  CAS  PubMed  Google Scholar 

  17. Paital B, Chainy GBN (2012) Biology and conservation of the genus Scylla in India subcontinent. J Environ Biol 33:871–879

    PubMed  Google Scholar 

  18. Paital B, Kumar S, Farmer R, Tripathy NK, Chainy GBN (2011) In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata. Interdiscip Sci Comput Life Sci 3:110–120

    Article  CAS  Google Scholar 

  19. Paital B, Kumar S, Farmer R, Tripathy NK, Chainy GBN (2013) In silico prediction of 3D structure of superoxide dismutase of Scylla serrata and its binding properties with inhibitors. Interdiscip Sci Comput Life Sci 5:69–76

    Article  CAS  Google Scholar 

  20. Paital B, Chainy GBN (2013a) Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): effects of inhibitors, salinity and season. J Enzyme Inhib Med Chem 28:195–204

    Article  CAS  PubMed  Google Scholar 

  21. Altshul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sali A, Matsumoto R, McNeil HP, Karplus M, Stevens RL (1993) Three-dimensional models of four mouse mast cell chymases, identification of proteoglycan-binding regions and protease-specific antigenic epitops. J Biol Chem 268:9023–9034

    CAS  PubMed  Google Scholar 

  25. Sali A, Overington JP (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 31:1582–1596

    Article  Google Scholar 

  26. Sali A, Pottertone L, Yuan F, Vlijmen VH, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  28. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  29. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1993) CHARMm: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  30. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  CAS  PubMed  Google Scholar 

  31. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  33. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  PubMed  Google Scholar 

  34. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interaction. Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  35. Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Institute of Life Sciences, Bhubaneswar, India. BRP is highly thankful to the University Grants Commission, New Delhi, India, for providing Dr. D.S. Kothari Fellowship (No. F.4-2/2006(BSR)/13-853/2013(BSR)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biswaranjan Paital or Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paital, B., Sablok, G., Kumar, S. et al. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach. Interdiscip Sci Comput Life Sci 8, 312–318 (2016). https://doi.org/10.1007/s12539-015-0110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0110-2

Keywords

Navigation