Skip to main content

Advertisement

Log in

Comprehensive structural and functional characterization of Mycobacterium tuberculosis UDP-NAG enolpyruvyl transferase (Mtb-MurA) and prediction of its accurate binding affinities with inhibitors

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death in the world. One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb), the etiologic agent of TB. The bacterial enzyme MurA catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first committed step of bacterial cell wall biosynthesis. In this work, 3D structure model of Mtb-MurA enzyme has been developed for the first time by homology modeling and molecular dynamics simulation techniques. Multiple sequence alignment and 3D structure model provided the putative substrate binding pocket of Mtb-MurA with respect to E. coli MurA. This analysis was helpful in identifying the binding sites and molecular function of the MurA homologue. Molecular docking study was performed on this 3D structure model, using different classes of inhibitors like fosfomycin, cyclic disulfide analog RWJ-3981, pyrazolopyrimidine analog RWJ-110192, purine analog RWJ-140998, 5-sulfonoxy-anthranilic acid derivatives T6361, T6362 and the results showed that the 5-sulfonoxyanthranilic acid derivatives showed the best interaction compared to other inhibitors. We also designed new efficient analogs of T6361 and T6362 which showed even better interaction with Mtb-MurA than the parental 5-sulfonoxy-anthranilic acid derivatives. Further the comparative molecular electrostatic potential and cavity depth analysis of Mtb-MurA suggested several important differences in its substrate and inhibitor binding pocket. Such differences could be exploited in the future for designing a more specific inhibitor for Mtb-MurA enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., Grish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    PubMed  CAS  Google Scholar 

  2. Andersen, P. 2007. Tuberculosis vaccines — an update. Nat Rev Microbiol 5, 484–487.

    Article  PubMed  CAS  Google Scholar 

  3. Anuradha, C.M., Mulakayala, C., Babajan, B., Naveen, M., Rajasekhar, C. 2009. Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking. J Mol Model 16, 77–85.

    Article  Google Scholar 

  4. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C.M., Harris, D.E., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E.II., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R.M., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L.D., Oliver, S., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, S., Squares, S., Squares, R., Sulston, J.E., Taylor, K., Whitehead, S., Barrell, B.G. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.

    Article  PubMed  CAS  Google Scholar 

  5. Connolly, M.L. 1983. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713.

    Article  PubMed  CAS  Google Scholar 

  6. Cox, H.S., Morrow, M., Deutschmann, P.W. 2008. Long term efficacy of DOTS regimens for tuberculosis systematic review. BMJ 336, 484–487.

    Article  PubMed  Google Scholar 

  7. de Smet, K.A., Kempsell, K.E., Gallagher, A., Duncan, K., Young, D.B. 1999. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145, 3177–3184.

    PubMed  Google Scholar 

  8. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J. 2006. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acid Research 34, 116–118.

    Article  Google Scholar 

  9. Ellen, Z.B., Deborah, A., Montenegro, S., Lisa, L., Ignatitus, T., Glenda, C.W., Barbard, D.F., Karen, B. 2001. Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Che 45, 3182–3188.

    Article  Google Scholar 

  10. Eschenburg, S., Priestman, M.A., Abdul-Latif, F.A., Delachaume, C., Fassy, F., Schonbrunn, E. 2005. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem 280, 14070–14075.

    Article  PubMed  CAS  Google Scholar 

  11. Hess, B., Bekker, H., Berendsen, H., Fraaije, J. 1997. LINCS: A linear constraint solver for molecular simulations. J Comp Chem 18, 1463–1472.

    Article  CAS  Google Scholar 

  12. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S. 2007. A semiempirical free energy force field with charge-based desolvation. J Comp Chem 28, 145–152.

    Article  Google Scholar 

  13. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J. 1998. Multiple sequence alignment with ClustalX. Trends in Biochem Sci 10, 403–405.

    Article  Google Scholar 

  14. Kim, D.H., Lees, W.J., Kempsell, K.E., Lane, W.S., Duncan, K., Walsh, C.T. 1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35, 4923–4928.

    Article  PubMed  CAS  Google Scholar 

  15. Laskowski, R.A., Chistyakov, V.V., Thornton, J.M. 2005. PDBSUM more: New summaries and analyses of the known 3-D structures proteins and nucleic acids. Nucleic Acids Res 33, 266–268.

    Article  Google Scholar 

  16. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291.

    Article  CAS  Google Scholar 

  17. Marquardt, J.L., Siegele, D.A., Kolter, R., Walsh, C.T. 1992. Cloning and sequencing of Escherichia coli murZ and puri?cation of its product, a UDP-Nacetylglucosamine enolpyruvyl transferase. J Bacteriol 74, 5748–5752.

    Google Scholar 

  18. McCoy, A.J., Sandlin, R.C., Maurelli, A.T. 2003. In vitro and in vivo functional activity of chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185, 1218–1228.

    Article  PubMed  CAS  Google Scholar 

  19. Miyamoto, S., Kollman, P.A. 1992. SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comp Chem 13, 952–962.

    Article  CAS  Google Scholar 

  20. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 19, 1639–1662.

    Article  CAS  Google Scholar 

  21. Parrish, N.M., Kuhajda, F.P., Heine, H.S., Bishai, W.R., Dick, J.D. 1999. Antimycobacterial activity of cerulenin and its effects on lipid biosynthesis. J Antimicrob Chemother 43, 219–226.

    Article  PubMed  CAS  Google Scholar 

  22. Philip, W.J., Poulet, S., Eiglmeier, K., Pascopella, Balasubramanian, V., Heym, B., Bergh, S., Bloom, B.R., Jacobs, W.R. Jr, Cole, S.T. 1996. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA 93, 3132–3137.

  23. Raetz, C.R., Roderick, S.L. 1995. A left-handed parallel beta helix in the structure of UDP-Nacetylglucosamine acyltransferase. Science 270, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  24. Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., Honig, B. 2002. Rapid grid-based construction of the molecular surface for both molecules and geometric objects: applications to the finite difference Poisson-Boltzmann method. J Comp Chem 23, 128–137.

    Article  CAS  Google Scholar 

  25. Roy, E., Lowrie, D.B., Jolles, S.R. 2007. Current strategies in TB immunotherapy. Curr Mol Med 7, 373–386.

    Article  PubMed  CAS  Google Scholar 

  26. Sali, A., Blundell, T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  27. Sanner, M.F. 1999. Python A programming language for software integration and development. J Mol Graph Model 17, 57–60.

    PubMed  CAS  Google Scholar 

  28. Schonbrunn, E., Sack, S., Eschenburg, S., Perrakis, A., Krekel, F., Amrhein, N., Mandelkow, E. 1996. Crystal structure of UDP-N-acetylglucosamine enolpyruvyltransferase, the target of the antibiotic fosfomycin. Structure 4, 1065–1075.

    Article  PubMed  CAS  Google Scholar 

  29. Schuettelkopf, A.W., van Aalten, D.M.F. 2004. PRODRG a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica 60, 1355–1363.

    Article  Google Scholar 

  30. Seth, V., Beotra, A., Semwal, O.P., Mukhopadhya, S. 1990. Monitoring of serum rifampin and isoniazid levels in childhood tuberculosis. Am Rev Respir Dis, 141, 330–337.

    Google Scholar 

  31. Sinha, N., Smith-Gill, S.J. 2002. Electrostatics in protein binding and function. Curr Protein Pept Sci 3, 601–614.

    Article  PubMed  CAS  Google Scholar 

  32. Sippl, M.J. 1993. Recognition of errors in three-dimensional structures in proteins. Proteins 17, 355–362.

    Article  PubMed  CAS  Google Scholar 

  33. Skarzynski, T., Kim, D.H., Lees, W.J., Walsh, C.T., Duncan, K. 1998. Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry 37, 2572–2577.

    Article  PubMed  CAS  Google Scholar 

  34. Skarzynski, T., Mistry, A., Wonacott, A., Hutchinson, S.E., Kelly, V.A., Duncan, K. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-Nacetylglucosamine and the drug fosfomycin. Structure 4, 1465–1474.

    Article  PubMed  CAS  Google Scholar 

  35. Snider, D.E., Raviglione, M., Kochi, A. 1993. Global burden of tuberculosis. In: Bloom, B. (Ed.) Tuberculosis: Pathogenesis, Protection and Control, 1st Edition, ASM Press, Washington, DC, 3.

    Google Scholar 

  36. Stallings, W.C., Abdel-Meguid, S.S., Lim, L.W., Shieh, H.S., Dayringer, H.E., Leimgruber, N.K., Stegeman, R.A., Anderson, K.S., Sikorski, J.A., Padgette, S.R., Kishore, G.M. 1991. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: A distinctive protein fold. Proc Natl Acad Sci USA 88, 5046–5050.

    Article  PubMed  CAS  Google Scholar 

  37. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J. 2005. GROMACS: Fast, flexible, and free. J Comput Chem 26, 1701–1718.

    Article  Google Scholar 

  38. Villarreal-Ramos, B. 2009. Towards improved understanding of protective mechanisms induced by the BCG vaccine. Expert Rev Vaccines 8, 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  39. Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. J Mol Graph 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, R., Gao, Y., Lai, L. 2000. LigBuilder: A multipurpose program for structure-based drug design. J Mol Model 6, 498–516.

    Article  CAS  Google Scholar 

  41. Weiner, P.K., Langridge, R., Blaney, J.M., Schaefer, R., Kollman, P.A. 1982. Electrostatic potential molecular surfaces. Proc Natl Acad Sci USA 79, 3754–3758.

    Article  PubMed  CAS  Google Scholar 

  42. Wright, A., Zignol, M., van Deun, A. 2009. Epidemiology of antituberculosis drug resistance 2002-07: An updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet. 373, 1861–1873.

    Article  PubMed  Google Scholar 

  43. Zoeiby, E.L., Sanschagrin, F., Levesque, R.C. 2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47, 1–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Anuradha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babajan, B., Chaitanya, M., Rajsekhar, C. et al. Comprehensive structural and functional characterization of Mycobacterium tuberculosis UDP-NAG enolpyruvyl transferase (Mtb-MurA) and prediction of its accurate binding affinities with inhibitors. Interdiscip Sci Comput Life Sci 3, 204–216 (2011). https://doi.org/10.1007/s12539-011-0100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0100-y

Key words

Navigation