Skip to main content
Log in

Stability of transient Cu+Aβ (1–16) species and influence of coordination and peptide configuration on superoxide formation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Accumulation of Cu2+ redox active metal cations has been associated with the oxidation damage observed in the development of Alzheimer disease. Copper ions can interact with accumulated amyloid-β (Aβ) peptides and mediate the toxicity of the peptide through the catalytic production of H2O2. The first step of this catalytic process is the reduction of Cu2+Aβ complex and the activation of O2 by the reduced species. This work addresses the stability of the reduced complexes and superoxide formation by Cu+Aβ (1–16) complexes. We have considered the experimentally proposed coordination spheres for Cu2+Aβ (1–16) which includes the terminal amino group, two His and the CO from Asp1 (complex I), three histidines and the CO of Ala2 (complex IIa), and one His, the NH2 terminus, the deprotonated amide nitrogen and carbonyl oxygen of Ala2 (complex IIc). Results from ab initio molecular dynamics calculations show that, after reduction of the square planar Cu2+Aβ complex, decoordination of the O atom occurs in the first steps and tricoordinated structures are stable during the simulation time scale, thereby being prone to O2 activation. Quantum chemical calculations on small models and Cu+Aβ (1–16) interacting with O2 indicate that the preference for O2 activation follow the order IIc > IIa > I. In all these cases energy barriers for superoxide formation are less than 4 kcal mol−1 and thus kinetically favorable. Comparison of small model systems and Cu+Aβ (1–16) have pointed out that peptide configuration may significantly influence the O2 activation through second sphere interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Selkoe D (2001) Physiol Rev 81:741–766

    CAS  Google Scholar 

  2. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Proc Natl Acad Sci 82:4245–4249

    Article  CAS  Google Scholar 

  3. Glenner GG, Wong CW (1984) Biochem Biophys Res Commun 120:885–890

    Article  CAS  Google Scholar 

  4. Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) J Neurol Sci 158:47–52

    Article  CAS  Google Scholar 

  5. James SA, Volitakis I, Adlard PA, Duce JA, Masters CL, Cherny RA, Bush AI (2012) Free Radic Biol Med 52:298–302

    Article  CAS  Google Scholar 

  6. Markesbery WR (1997) Free Radic Biol Med 23:134–147

    Article  CAS  Google Scholar 

  7. Bush AI (2003) Trends Neurosci 26:207–214

    Article  CAS  Google Scholar 

  8. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JDA, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  CAS  Google Scholar 

  9. Hureau C, Faller P (2009) Biochimie 91:1212–1217

    Article  CAS  Google Scholar 

  10. Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308

    Article  CAS  Google Scholar 

  11. Guilloreau L, Combalbert S, Sournia-Saquet M, Mazarguil H, Faller P (2007) ChemBioChem 8:1317–1325

    Article  CAS  Google Scholar 

  12. Parthasarathy S, Yoo B, McElheny D, Tay W, Ishii Y (2014) J Biol Chem 289:9998–10010

    Article  CAS  Google Scholar 

  13. Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Biochemistry 46:9270–9282

    Article  CAS  Google Scholar 

  14. Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214

    Article  CAS  Google Scholar 

  15. Hewitt N, Rauk A (2009) J Phys Chem B 113:1202–1209

    Article  CAS  Google Scholar 

  16. Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna G, Collin F, Gomes CM, Hureau C, Faller P (2016) Angew Chem Int Ed 55:1085–1089

    Article  CAS  Google Scholar 

  17. Alí-Torres J, Mirats A, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2014) J Phys Chem B 118:4840–4850

    Article  Google Scholar 

  18. Peck KL, Clewett HS, Schmitt JC, Shearer J (2013) Chem Commun 49:4797–4799

    Article  CAS  Google Scholar 

  19. Drew SC, Barnham KJ (2011) Acc Chem Res 44:1146–1155

    Article  CAS  Google Scholar 

  20. Hureau C (2012) Coord Chem Rev 256:2164–2174

    Article  CAS  Google Scholar 

  21. Alí-Torres J, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2011) J Am Chem Soc 133:15008–15014

    Article  Google Scholar 

  22. Alí-Torres J, Mirats A, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2015) AIP Adv 5:092402

    Article  Google Scholar 

  23. Balland V, Hureau C, Savéant J-M (2010) Proc Natl Acad Sci USA 107:17113–17118

    Article  CAS  Google Scholar 

  24. Constantino E, Rimola A, Rodríguez-Santiago L, Sodupe M (2005) New J Chem 29:1585

    Article  CAS  Google Scholar 

  25. Rimola A, Constantino E, Rodríguez-Santiago L, Sodupe M (2008) J Phys Chem A 112:3444–3453

    Article  CAS  Google Scholar 

  26. Himes RA, Park GY, Barry AN, Blackburn NJ, Karlin KD (2007) J Am Chem Soc 129:5352–5353

    Article  CAS  Google Scholar 

  27. Mirats A, Alí-Torres J, Rodríguez-Santiago L, Sodupe M, La Penna G (2015) Phys Chem Chem Phys 17:27270–27274

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  29. Steinmann SN, Piemontesi C, Delachat A, Corminboeuf C (2012) J Chem Theory Comput 8:1629–1640

    Article  CAS  Google Scholar 

  30. Georgieva I, Trendafilova N, Rodríguez-Santiago L, Sodupe M (2005) J Phys Chem A 109:5668–5676

    Article  CAS  Google Scholar 

  31. Rios-Font R, Sodupe M, Rodríguez-Santiago L, Taylor PR (2010) J Phys Chem A 114:10857–10863

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  33. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  34. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revis. D.1. Gaussian Inc, Wallingford

    Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  38. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103–128

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M, of Physics D, and Quantum Theory Group Tulane University NOL 70118 (1996) J Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  Google Scholar 

  42. Lippert G, Hutter J, Parrinello M (1997) Mol Phys 92:477–488

    Article  CAS  Google Scholar 

  43. VandeVondele J, Hutter J (2007) J Chem Phys 127:114105

    Article  Google Scholar 

  44. Blöchl PE (1995) J Chem Phys 103:7422

    Article  Google Scholar 

  45. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  46. Krack M (2005) Theor Chem Acc 114:145–152

    Article  CAS  Google Scholar 

  47. Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641–3662

    Article  CAS  Google Scholar 

  48. VandeVondele J, Hutter J (2003) J Chem Phys 118:4365–4369

    Article  CAS  Google Scholar 

  49. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  50. Laino T, Mohamed F, Laio A, Parrinello M (2005) J Chem Theory Comput 1:1176–1184

    Article  CAS  Google Scholar 

  51. Laino T, Mohamed F, Laio A, Parrinello M (2006) J Chem Theory Comput 2:1370–1378

    Article  CAS  Google Scholar 

  52. National Institute of Standards and Technology. http://cccbdb.nist.gov/exp2.asp?casno=7782447. Accessed 27 Oct 2015

  53. Rauk A (2009) Chem Soc Rev 38:2698–2715

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from MINECO and the Generalitat de Catalunya, through CTQ2014-59544-P and 2014SGR-482 projects, respectively, and the use of computer time at the CESCA supercomputing center and the BSC supercomputing center (QCM-2014-1-0019 project). MS also acknowledges support through 2011 ICREA Academia award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rodríguez-Santiago.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirats, A., Alí-Torres, J., Rodríguez-Santiago, L. et al. Stability of transient Cu+Aβ (1–16) species and influence of coordination and peptide configuration on superoxide formation. Theor Chem Acc 135, 75 (2016). https://doi.org/10.1007/s00214-016-1836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1836-6

Keywords

Navigation