Skip to main content

Advertisement

Log in

Optimal Volterra-based nonlinear system identification using arithmetic optimization algorithm assisted with Kalman filter

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper presents the handling of nonlinear system identification problem based on Volterra-type nonlinear systems. An efficient arithmetic optimization algorithm (AOA) along with the Kalman filter (KF) is being used for the estimation/identification purpose. The KF is proved to be a good state estimator in estimation theory. It is used to estimate the unknown variables with some given measurements observed over time. However, the performance of KF technique degrades while dealing with real-time state estimation problems. To overcome the problem encountered in KF technique, two steps are followed for nonlinear system identification. The first one involves evaluation of the KF parameters using the AOA algorithm by taking a considerable fitness function. The second step is to estimate the parameters of Volterra model using the KF method utilizing the optimal KF parameters attained in first step. In order to prove the efficiency of the proposed KF assisted AOA algorithm is further tested on various benchmark unknown Volterra models. Simulated results are reported in terms of mean square error (MSE), mean square deviation (MSD), Volterra coefficients estimation error, and fitness percentage. The results are compared with other similar algorithms such as sine cosine algorithm (SCA) assisted KF (SCA-KF), cuckoo search algorithm (CSA) assisted KF (CSA-KF), particle swarm optimization (PSO) assisted KF (PSO-KF) and genetic algorithm (GA) assisted KF (GA-KF). The reported results reveal that AOA-KF algorithm is the right choice for nonlinear system identification problem compared to the SCA-KF, CSA-KF, PSO-KF and GA-KF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MATH  Google Scholar 

  • Al-Duwaish HN (2011) Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab J Sci Eng 36(7):1269–1276

    Article  Google Scholar 

  • Angelov P (1994) A generalized approach to fuzzy optimization. Int J Intell Syst 9(3):261–268

    Article  MATH  Google Scholar 

  • Angelov PP, Gu X (2019) Empirical approach to machine learning. Springer, London

    Book  Google Scholar 

  • Angelov PP, Gu X, Príncipe JC (2017) A generalized methodology for data analysis. IEEE Trans Cybern 48(10):2981–2993

    Article  Google Scholar 

  • de Assis LS, Junior JRdP, Tarrataca L, Haddad DB (2019) Efficient Volterra systems identification using hierarchical genetic algorithms. Appl Soft Comput 85:105745

    Article  Google Scholar 

  • Batselier K, Chen Z, Wong N (2017) A tensor network Kalman filter with an application in recursive mimo Volterra system identification. Automatica 84:17–25

    Article  MATH  Google Scholar 

  • Batselier K, Wong N (2018) Matrix output extension of the tensor network Kalman filter with an application in MIMO Volterra system identification. Automatica 95:413–418

    Article  MATH  Google Scholar 

  • Beldjilali B, Benadda B, Sadouni Z (2020) Vehicles circuits optimization by combining gps/gsm information with metaheuristic algorithms. Romanian J Inform Sci Technol 23T:T5–T17

    Google Scholar 

  • Biagiola SI, Figueroa JL (2009) Wiener and Hammerstein uncertain models identification. Math Comput Simul 79(11):3296–3313

    Article  MATH  Google Scholar 

  • Bittanti S, Piroddi L (1997) Nonlinear identification and control of a heat exchanger: a neural network approach. J Franklin Inst 334(1):135–153

    Article  MATH  Google Scholar 

  • Brown RG, Hwang PY (1997) Introduction to random signals and applied Kalman filtering: with matlab exercises and solutions. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions

  • Chang Wei-Der (2012) Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Dig Signal Process 22(6):1056–1062

    Article  Google Scholar 

  • Cuevas E, Díaz P, Avalos O, Zaldívar D, Pérez-Cisneros M (2018) Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm. Appl Intell 48(1):182–203

    Article  Google Scholar 

  • Durmuş B (2021) Infinite impulse response system identification using average differential evolution algorithm with local search. Neural Comput Appl 34:1–16

    Google Scholar 

  • Ebrahimi SM, Malekzadeh M, Alizadeh M, HosseinNia SH (2021) Parameter identification of nonlinear system using an improved Lozi map based chaotic optimization algorithm (ilcoa). Evol Syst 12(2):255–272

    Article  Google Scholar 

  • Ekşioğlu EM, Kayran AH (2005) Volterra kernel estimation for nonlinear communication channels using deterministic sequences. AEU-Int J Electron Commun 59(2):118–127

    Article  Google Scholar 

  • Garcia R, Pardal P, Kuga H, Zanardi M (2019) Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman filter, unscented Kalman filter and extended Kalman filter. Adv Space Res 63(2):1038–1050

    Article  Google Scholar 

  • Gu X, Angelov P, Rong HJ (2019) Local optimality of self-organizing neuro-fuzzy inference systems. Inf Sci 503:351–380

    Article  Google Scholar 

  • Gu X, Shen Q, Angelov PP (2020) Particle swarm optimized autonomous learning fuzzy system. IEEE Trans Cybern 51(11):5352–5363

    Article  Google Scholar 

  • Havangi R (2018) Joint parameter and state estimation based on marginal particle filter and particle swarm optimization. Circuits Syst Signal Process 37(8):3558–3575

    Article  MATH  Google Scholar 

  • Jaleel EA, Aparna K (2019) Identification of realistic distillation column using hybrid particle swarm optimization and narx based artificial neural network. Evol Syst 10(2):149–166

    Article  Google Scholar 

  • Janjanam L, Saha SK, Kar R, Mandal D (2021) Global gravitational search algorithm-aided Kalman filter design for Volterra-based nonlinear system identification. Circuits Syst Signal Process 40(5):2302–2334

    Article  Google Scholar 

  • Janjanam L, Saha SK, Kar R, Mandal D (2021) An efficient identification approach for highly complex non-linear systems using the evolutionary computing method based Kalman filter. AEU-Int J Electron Commun 138:153890

    Article  Google Scholar 

  • Janjanam L, Saha S, Kar R, Mandal D (2020) Volterra filter modelling of non-linear system using Artificial Electric Field algorithm assisted Kalman filter and its experimental evaluation. ISA Trans

  • Jiang S, Wang Y, Ji Z (2015) A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dyn 79(4):2553–2576

    Article  Google Scholar 

  • Kim T, Adhikaree A, Pandey R, Kang DW, Kim M, Oh CY, Baek JW (2018) An on-board model-based condition monitoring for lithium-ion batteries. IEEE Trans Ind Appl 55(2):1835–1843

    Article  Google Scholar 

  • Koukoulas P, Kalouptsidis N (2000) Second-order Volterra system identification. IEEE Trans Signal Process 48(12):3574–3577

    Article  MATH  Google Scholar 

  • Kumar M, Aggarwal A, Rawat T, Parthasarathy H (2016) Optimal nonlinear system identification using fractional delay second-order Volterra system. IEEE/CAA J Autom Sin. https://doi.org/10.1109/jas.2016.7510184

    Article  Google Scholar 

  • Li X, Chen L, Tang Y (2020) Hard: Bit-split string matching using a heuristic algorithm to reduce memory demand. Romanian J Inform Sci Technol 23:T94–T105

    Google Scholar 

  • Lu L, Zhao H (2016) Adaptive Volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control. J Sound Vib 364:14–29

    Article  Google Scholar 

  • Lu L, Zhao H, Chen B (2016) Improved-variable-forgetting-factor recursive algorithm based on the logarithmic cost for Volterra system identification. IEEE Trans Circuits Syst II Express Briefs 63(6):588–592

    Google Scholar 

  • Manolakis DG, Ingle VK, Kogon SM et al (2000) Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing. McGraw-Hill, Boston

    Google Scholar 

  • Mauroy A, Goncalves J (2019) Koopman-based lifting techniques for nonlinear systems identification. IEEE Trans Autom Control 65(6):2550–2565

    Article  MATH  Google Scholar 

  • Mazaheri A, Mansouri M, Shooredeli M (2014) 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM) (IEEE), pp 298–303

  • Mehra R (1972) Approaches to adaptive filtering. IEEE Trans Autom Control 17(5):693–698

    Article  MATH  Google Scholar 

  • Mete S, Ozer S, Zorlu H (2016) System identification using Hammerstein model optimized with differential evolution algorithm. AEU-Int J Electron Commun 70(12):1667–1675

    Article  MATH  Google Scholar 

  • Mohammadi A, Zahiri SH, Razavi SM (2018) Infinite impulse response systems modeling by artificial intelligent optimization methods. Evol Syst 10:1–17

    Google Scholar 

  • De Moor B, De Gersem P, De Schutter B, Favoreel W (1997) Daisy: a database for identification of systems. Journal A 38:4–5

    Google Scholar 

  • Pakrashi A, Chaudhuri BB (2016) A Kalman filtering induced heuristic optimization based partitional data clustering. Inf Sci 369:704–717

    Article  Google Scholar 

  • Pozna C, Precup RE, Horvath E, Petriu EM (2022) Hybrid particle filter-particle swarm optimization algorithm and application to fuzzy controlled servo systems. IEEE Trans Fuzzy Syst

  • Precup RE, David RC (2019) Nature-inspired optimization algorithms for fuzzy controlled servo systems. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122

    Article  MATH  Google Scholar 

  • Saha S, Kar R, Mandal D, Ghoshal S (2015) Optimal IIR filter design using gravitational search algorithm with wavelet mutation. J King Saud Univ Comput Inform Sci 27(1):25–39

    Google Scholar 

  • Saigaa M, Chitroub S, Meraoumia A (2021) An effective biometric identification system using enhanced palm texture features. Evol Syst 13:1–21

    Google Scholar 

  • Schumacher R, Lima EG, Oliveira GH (2016) RF power amplifier behavioral modeling based on Takenaka–Malmquist–Volterra series. Circuits Syst Signal Process 35(7):2298–2316

    Article  MATH  Google Scholar 

  • Shaikh MAH, Barbé K (2019) Wiener-Hammerstein system identification: a fast approach through spearman correlation. IEEE Trans Instrum Meas 68(5):1628–1636

    Article  Google Scholar 

  • da Silva FB, Martins WA (2019) Semi-blind data-selective and multiple threshold Volterra adaptive filtering. Circuits Syst Signal Process 39:1–24

    Google Scholar 

  • Simon D (2006) Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley, London

    Book  Google Scholar 

  • Singh S, Ashok A, Kumar M, Rawat TK (2019) Adaptive infinite impulse response system identification using teacher learner based optimization algorithm. Appl Intell 49(5):1785–1802

    Article  Google Scholar 

  • Sliwiński P, Marconato A, Wachel P, Birpoutsoukis G (2017) Non-linear system modelling based on constrained Volterra series estimates. IET Control Theory Appl 11(15):2623–2629

    Article  Google Scholar 

  • Söderström T, Stoica P (1989) System identification. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  • Walpole RE, Myers RH, Myers SL, Ye K (1993) Probability and statistics for engineers and scientists, vol 5. Macmillan, New York

    MATH  Google Scholar 

  • Wang SY, Yin C, Duan SK, Wang LD (2017) A modified variational Bayesian noise adaptive Kalman filter. Circuits Syst Signal Process 36(10):4260–4277

    Article  MATH  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Xu W, Wang S, Fernandez C, Yu C, Fan Y, Cao W (2020) Novel reduced-order modeling method combined with three-particle nonlinear transform unscented Kalman filtering for the battery state-of-charge estimation. J Power Electron 20(6):1541–1549

    Article  Google Scholar 

  • Xu D, Wu Z, Huang Y (2019) A new adaptive Kalman filter with inaccurate noise statistics. Circuits Syst Signal Process 38(9):4380–4404

    Article  Google Scholar 

  • Xu W, Xu J, Yan X (2020) Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter. J Power Electron 20(1):292–307

    Article  Google Scholar 

  • Yadav Suman, Yadav Richa, Kumar Ashwni, Kumar Manjeet (2021) A novel approach for optimal design of digital FIR filter using grasshopper optimization algorithm. ISA Trans 108:196–206

    Article  Google Scholar 

  • Yazid E, Liew MS, Parman S, Kurian VJ (2015) Improving the modeling capacity of Volterra model using evolutionary computing methods based on Kalman smoother adaptive filter. Appl Soft Comput 35:695–707

    Article  Google Scholar 

  • Yin KL, Pu YF, Lu L (2020) Combination of fractional FLANN filters for solving the Van der Pol-Duffing oscillator. Neurocomputing 399:183–192

    Article  Google Scholar 

  • Yu F, Mao Z, Yuan P, He D, Jia M (2017) Recursive parameter estimation for Hammerstein-Wiener systems using modified ekf algorithm. ISA Trans 70:104–115

    Article  Google Scholar 

  • Zamfirache IA, Precup RE, Roman RC, Petriu EM (2022) Reinforcement learning-based control using q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system. Inf Sci 583:99–120

    Article  Google Scholar 

  • Zhou X, Yang C, Gui W (2014) Nonlinear system identification and control using state transition algorithm. Appl Math Comput 226:169–179

    MATH  Google Scholar 

  • Zhou H, Zhao H, Zhang Y (2020) Nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications. Appl Intell 50:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Author notes

  1. Alaknanda Ashok and Tarun Kumar Rawat have contributed equally to this work.

    Authors

    Contributions

    All the three authors have contributed equally in this work.

    Corresponding author

    Correspondence to Sandeep Singh.

    Ethics declarations

    Conflict of interest

    The authors declare that they have no conflict of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Singh, S., Ashok, A. & Rawat, T.K. Optimal Volterra-based nonlinear system identification using arithmetic optimization algorithm assisted with Kalman filter. Evolving Systems 14, 117–139 (2023). https://doi.org/10.1007/s12530-022-09439-z

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s12530-022-09439-z

    Keywords

    Navigation