Skip to main content
Log in

RF Power Amplifier Behavioral Modeling Based on Takenaka–Malmquist–Volterra Series

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a Takenaka–Malmquist–Volterra (TMV) model structure is employed to improve the approximations in the low-pass equivalent behavioral modeling of radio frequency (RF) power amplifiers (PAs). The Takenaka–Malmquist basis generalizes the orthonormal basis functions previously used in this context. In addition, it allows each nonlinearity order in the expanded Volterra model to be parameterized by multiple complex poles (dynamics). The state-space realizations for the TMV models are introduced. The pole sets for the TMV model and also for the previous Laguerre–Volterra (LV) and Kautz–Volterra (KV) models are obtained using a constrained nonlinear optimization approach. Based on experimental data measured on a GaN HEMT class AB RF PA excited by a WCDMA signal, it is observed that the TMV model reduces the normalized mean-square error and the adjacent channel error power ratio for the upper adjacent channel (upper ACEPR) by 1.6 dB when it is compared to the previous LV and KV models under the same computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In [5], a different approach based on a gradient descent procedure is proposed to search for the basis function poles. Such algorithm is fed with an approximation of the gradient descent cost function.

References

  1. M. Bahoura, FPGA implementation of high-speed neural network for power amplifier behavioral modeling. Analog Integr. Circuits Signal Process. 79(3), 507–527 (2014)

    Article  Google Scholar 

  2. S. Benedetto, E. Biglieri, R. Daffara, Modeling and performance evaluation of nonlinear satellite links a Volterra series approach. IEEE Trans. Aerosp. Electron. Syst. 15(4), 494–507 (1979)

    Article  Google Scholar 

  3. R.H. Byrd, M.E. Hribar, J. Nocedal, An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House, Norwood, MA, 2006)

    Google Scholar 

  5. R. Hacioglu, G.A. Williamson, Reduced complexity Volterra models for nonlinear system identification. EURASIP J. Appl. Signal Process. 4, 257–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. P.S.C. Heuberger, P.M.J. Van den Hof, B. Wahlberg, Modeling and Identification with Rational Orthogonal Basis Functions (Springer, London, 2005)

    Book  Google Scholar 

  7. M. Isaksson, D. Rönnow, A parameter-reduced volterra model for dynamic RF power amplifier modeling based on orthonormal basis functions. Int. J. RF Microw. Comput.-Aided Eng. 17(6), 542–551 (2007)

    Article  Google Scholar 

  8. M. Isaksson, D. Rönnow, A Kautz–Volterra behavioral model for RF power amplifiers, in IEEE MTT-S International Microwave Symposium Digest, (San Francisco, CA, 2006), pp. 485–488

  9. M. Isaksson, D. Wisell, D. Rönnow, A comparative analysis of behavioral models for RF power amplifiers. IEEE Trans. Microw. Theory Tech. 54(1), 348–359 (2006)

    Article  Google Scholar 

  10. H. Jiang, P.A. Wilford, Digital Predistortion for Power Amplifiers Using Separable Functions. IEEE Trans. Signal Process. 58(8), 4121–4130 (2010)

    Article  MathSciNet  Google Scholar 

  11. P.B. Kenington, High Linearity RF Amplifier Design (Artech House, Norwood, 2000)

    Google Scholar 

  12. B.M. Lee, R.J.P. de Figueiredo, Adaptive predistorters for linearization of high-power amplifiers in OFDM wireless communications. Circuits Syst. Signal Process. 25(1), 59–80 (2006)

    Article  MATH  Google Scholar 

  13. V. Mathews, G. Sicuranza, Polynomial Signal Processing (Wiley, New York, 2000)

    Google Scholar 

  14. S.D. Mitchell, G.H.C. Oliveira, Analysing a power transformer’s internal response to system transients using a hybrid modelling methodology. Int. J. Electr. Power Energy Syst. 69, 67–75 (2015)

    Article  Google Scholar 

  15. F. Mkadem, M.C. Fares, S. Boumaiza, J. Wood, Complexity-reduced Volterra series model for power amplifier digital predistortion. Analog Integr. Circuits Signal Process. 79(2), 331–343 (2014)

    Article  Google Scholar 

  16. B. Ninness, F. Gustafsson, A unifying construction of orthonormal bases for system identification. IEEE Trans. Autom. Control 42(4), 515–521 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. G.H.C. Oliveira, W.C. Amaral, K. Latawiec, An introduction to models based on Laguerre, Kautz and other related orthonormal functions—Part II: non-linear models. Int. J. Model. Identif. Control 16, 1–14 (2012)

    Article  Google Scholar 

  18. G.H.C. Oliveira, W.C. Amaral, K. Latawiec, CRHPC using Volterra models and orthonormal basis functions: an application to CSTR plants, in Proc. IEEE Control Applications Conf. (Istanbul, 2003), pp. 718–723

  19. B. Özgül, J. Langer, J. Noguera, K. Vissers, Software-programmable digital pre-distortion on new generation FPGAs. Analog Integr. Circuits Signal Process. 78(3), 573–587 (2014)

    Article  Google Scholar 

  20. W. Pan, Y. Liu, S. Shao, Y. Tang, A method to reduce sampling rate of the ADC in feedback channel for wideband digital predistortion. Circuits Syst. Signal Process. 33(8), 2655–2665 (2014)

    Article  Google Scholar 

  21. J.C. Pedro, S.A. Maas, A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microw. Theory Tech. 53(4), 1150–1163 (2005)

    Article  Google Scholar 

  22. M. Rawat, K. Rawat, F.M. Ghannouchi, S. Bhattacharjee, H. Leung, Generalized rational functions for reduced-complexity behavioral modeling and digital predistortion of broadband wireless transmitters. IEEE Trans. Instrum. Meas. 63(2), 485–498 (2014)

    Article  Google Scholar 

  23. D. Raychaudhuri, N.B. Mandayam, Frontiers of wireless and mobile communications. Proc. IEEE 100(4), 824–840 (2012)

    Article  Google Scholar 

  24. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (John Wiley, New York, 1980)

    MATH  Google Scholar 

  25. R. Schumacher, G.H.C. Oliveira, S.D. Mitchell, An iterative approach for selecting poles on complex frequency localizing basis function-based models. J. Control Autom. Electr. Syst. 26(4), 380–389 (2015)

    Article  Google Scholar 

  26. B. Wahlberg, System identification using Kautz models. IEEE Trans. Autom. Control 39(6), 1276–1282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Q. Zheng, E. Zafiriou, Nonlinear system identification for control using Volterra–Laguerre expansion, in Proc. American Control Conf. (Seattle, WA, 1995), pp. 2195–2199

  28. A. Zhu, T.J. Brazil, RF power amplifier behavioral modeling using Volterra expansion with Laguerre functions, in IEEE MTT-S International Microwave Symposium Digest, (Long Beach, CA, 1979), pp. 963–966

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo H. C. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, R., Lima, E.G. & Oliveira, G.H.C. RF Power Amplifier Behavioral Modeling Based on Takenaka–Malmquist–Volterra Series. Circuits Syst Signal Process 35, 2298–2316 (2016). https://doi.org/10.1007/s00034-015-0151-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0151-0

Keywords

Navigation