Skip to main content

Advertisement

Log in

Development and characterization of new polymorphic microsatellite markers in four sea anemones: Entacmaea quadricolor, Heteractis magnifica, Stichodactyla gigantea, and Stichodactyla mertensii

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Relatively few studies have investigated the genetic population structure of sea anemones. This is particularly true for sea anemones that host some of the most iconic fishes on coral reefs, the anemonefishes. One of the main reasons for this knowledge gap is the lack of appropriate genetic markers. We developed and characterized a total of 47 novel polymorphic microsatellite markers for four host sea anemone species from the Indo-Pacific: Entacmaea quadricolor (n = 16 microsatellite markers), Heteractis magnifica (n = 8), Stichodactyla mertensii (n = 13), and Stichodactyla gigantea (n = 10). Here, we report genetic diversity statistics from two different sampling locations for each anemone species. Overall, we found that most markers were highly polymorphic. On average, we found a mean of seven alleles per locus. Observed and expected heterozygosities displayed high variation among loci, ranging from 0.033 to 0.980 and from 0.038 to 0.927, respectively. Only four loci showed deviations of Hardy–Weinberg equilibrium in both populations and were identified as having null alleles. Additionally, two pairs of loci were identified to be in linkage disequilibrium in only one population. Host anemones are highly sought after in the marine aquarium trade and are susceptible to thermal bleaching. Although most studies focus on their obligate symbionts (the anemonefish), genetic analyses of host sea anemones can expand our understanding of the biology, connectivity, and population structure of these organisms and potentially help develop conservation strategies that will aid both the host and its symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744. doi:10.1126/science.1140597

    Article  PubMed  CAS  Google Scholar 

  • Andras JP, Kirk NL, Drew Harvell C (2011) Range-wide population genetic structure of Symbiodinium associated with the Caribbean sea fan coral, Gorgonia ventalina. Mol Ecol 20:2525–2542. doi:10.1111/j.1365-294X.2011.05115.x

    Article  PubMed  Google Scholar 

  • Ben-Horin T, Iacchei M, Selkoe KA, Mai TT, Toonen RJ (2009) Characterization of eight polymorphic microsatellite loci for the California spiny lobster, Panulirus interruptus and cross-amplification in other achelate lobsters. Conserv Genet Resour 1:193–197. doi:10.1007/s12686-009-9047-2

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452. doi:10.1002/ece3.208

    Article  PubMed  PubMed Central  Google Scholar 

  • Billingham M, Ayre DJ (1996) Genetic subdivision in the subtidal, clonal sea anemone Anthothoe albocincta. Mar Biol 125:153–163. doi:10.1007/BF00350769

    Article  Google Scholar 

  • Bocharova ES, Kozevich IA (2011) Modes of reproduction in sea anemones (Cnidaria, Anthozoa). Biol Bull Russ Acad Sci 38:849–860. doi:10.1134/S1062359011090020

    Article  Google Scholar 

  • Bonin MC, Saenz-Agudelo P, Harrison HB, Nanninga GB, van der Meer MH, Mansour H, Perumal S, Jones GP, Berumen ML (2016) Characterization and cross-amplification of microsatellite markers in four species of anemonefish (Pomacentridae, Amphiprion spp.). Mar Biodivers 46:135–140. doi:10.1007/s12526-015-0336-6

    Article  Google Scholar 

  • Brolund TM, Tychsen A, Nielsen LE, Arvedlund M (2004) An assemblage of the host anemone Heteractis magnifica in the northern Red Sea, and distribution of the resident anemonefish. J Mar Biol Assoc UK 84:671–674. doi:10.1017/S0025315404009737h

    Article  Google Scholar 

  • Buston PM, Jones GP, Planes S, Thorrold SR (2012) Probability of successful larval dispersal declines fivefold over 1 km in a coral reef fish. Proc R Soc B Biol Sci 279:1883–1888. doi:10.1098/rspb.2011.2041

    Article  Google Scholar 

  • Chomsky O, Douek J, Chadwick NE, Dubinsky Z, Rinkevich B (2009) Biological and population-genetic aspects of the sea anemone Actiniaequina (Cnidaria: Anthozoa) along the Mediterranean coast of Israel. J Exp Mar Biol Ecol 375:16–20. doi:10.1016/j.jembe.2009.04.017

    Article  Google Scholar 

  • Darling JA, Reitzel AM, Finnerty JR (2004) Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Mol Ecol 13:2969–2981. doi:10.1111/j.1365-294X.2004.02313.x

    Article  PubMed  CAS  Google Scholar 

  • Darling JA, Reitzel AM, Finnerty JR (2006) Characterization of microsatellite loci in the widely introduced estuarine anemone Nematostella vectensis. Mol Ecol Notes 6:803–805. doi:10.1111/j.1471-8286.2006.01350.x

    Article  CAS  Google Scholar 

  • Dunn DF (1981) The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea anemones symbiotic with pomacentrid fishes. Trans Am Philos Soc 71:3–115

    Article  Google Scholar 

  • Edmands S, Potts DC (1997) Population genetic structure in brooding sea anemones (Epiactis spp.) with contrasting reproductive modes. Mar Biol 127:485–498. doi:10.1007/s002270050037

    Article  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. doi:10.1111/j.1471-8286.2007.01884.x

    Article  PubMed  CAS  Google Scholar 

  • Fautin DG, Allen GR (1997) Anemonefishes and their host sea anemones: a guide for aquarists and divers. Western Australian Museum, Perth

  • Fautin DG, Guo CC, Hwang JS (1995) Costs and benefits of the symbiosis between the anemoneshrimp Periclimenes brevicarpalis and its host Entacmaea quadricolor. Mar Ecol Prog Ser 129:77–84. doi:10.3354/meps129077

    Article  Google Scholar 

  • Giles EC, Saenz-Agudelo P, Berumen ML, Ravasi T (2013) Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri. Mar Biodivers 43:237–241. doi:10.1007/s12526-013-0151-x

    Article  Google Scholar 

  • Guo CC, Hwang JS, Fautin DG (1996) Host selection by shrimps symbiotic with sea anemones: a field survey and experimental laboratory analysis. J Exp Mar Biol Ecol 202:165–176. doi:10.1016/0022-0981(96)00020-2

    Article  Google Scholar 

  • Hattori A (2002) Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J Anim Ecol 71:824–831. doi:10.1046/j.1365-2656.2002.00649.x

    Article  Google Scholar 

  • Hill R, Scott A (2012) The influence of irradiance on the severity of thermal bleaching in sea anemones that host anemonefish. Coral Reefs 31:273–284. doi:10.1007/s00338-011-0848-x

    Article  Google Scholar 

  • Hobbs JPA, Frisch AJ, Ford BM, Thums M, Saenz-Agudelo P, Furby KA, Berumen ML (2013) Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes. PLoS One 8:e70966. doi:10.1371/journal.pone.0070966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoeksema BW, Crowther AL (2011) Masquerade, mimicry and crypsis of the polymorphic sea anemone Phyllodiscus semoni and its aggregations in South Sulawesi. Contrib Zool 80:251–268

    Google Scholar 

  • Holbrook SJ, Schmitt RJ (2004) Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish. Coral Reefs 24:67–73. doi:10.1007/s00338-004-0432-8

    Article  Google Scholar 

  • Howells EJ, Van Oppen MJH, Willis BL (2009) High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium. Coral Reefs 28:215–225. doi:10.1007/s00338-008-0450-z

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Madduppa HH, von Juterzenka K, Syakir M, Kochzius M (2014) Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia. Ocean Coast Manag 100:41–50. doi:10.1016/j.ocecoaman.2014.07.013

    Article  Google Scholar 

  • Mariscal RN (1970) The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar Biol 6:58–65. doi:10.1007/BF00352608

    Article  Google Scholar 

  • Nanninga GB, Saenz-Agudelo P, Manica A, Berumen ML (2014) Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Mol Ecol 23:591–602. doi:10.1111/mec.12623

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinsky ML, Montes HR Jr, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64:2688–2700. doi:10.1111/j.1558-5646.2010.01003.x

    Article  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci U S A 106:5693–5697. doi:10.1073/pnas.0808007106

    Article  PubMed  PubMed Central  Google Scholar 

  • Priest MA, Almany GR, Braun CD, Hamilton RJ, Lozano-Cortés DF, Saenz-Agudelo P, Berumen ML (2015) Isolation and characterization of 29 microsatellite markers for the bumphead parrotfish, Bolbometopon muricatum, and cross amplification in 12 related species. Mar Biodivers 45:861–866. doi:10.1007/s12526-014-0278-4

    Article  Google Scholar 

  • Randall JE, Fautin DG (2002) Fishes other than anemonefishes that associate with sea anemones. Coral Reefs 21:188–190. doi:10.1007/s00338-002-0234-9

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM (2013) Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol 22:2953–2970. doi:10.1111/mec.12228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Bioinform Methods Protoc 132:365–386

    Article  Google Scholar 

  • Russo CAM, Solé-Cava AM, Thorpe JP (1994) Population structure and genetic variation in two tropical sea anemones (Cnidaria, Actinidae) with different reproductive strategies. Mar Biol 119:267–276. doi:10.1007/BF00349566

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011a) Detrimental effects of host anemone bleaching on anemonefish populations. Coral Reefs 30:497–506. doi:10.1007/s00338-010-0716-0

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011b) Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc Biol Sci 278:2954–2961. doi:10.1098/rspb.2010.2780

    Article  PubMed  PubMed Central  Google Scholar 

  • Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:833–841

    Article  CAS  Google Scholar 

  • Sherman CDH, Ayre DJ (2008) Fine-scale adaptation in a clonal sea anemone. Evolution 62:1373–1380. doi:10.1111/j.1558-5646.2008.00375.x

    Article  PubMed  Google Scholar 

  • Sherman CDH, Peucker AJ, Ayre DJ (2007) Do reproductive tactics vary with habitat heterogeneity in the intertidal sea anemone Actinia tenebrosa? J Exp Mar Biol Ecol 340:259–267. doi:10.1016/j.jembe.2006.09.016

    Article  Google Scholar 

  • Shick JM, Lamb AN (1977) Asexual reproduction and genetic population structure in the colonizing sea anemone Haliplanella luciae. Biol Bull 153:604–617

    Article  Google Scholar 

  • Shick JM, Hoffmann RJ, Lamb AN (1979) Asexual reproduction, population structure, and genotype–environment interactions in sea anemones. Am Zool 19:699–713. doi:10.1093/icb/19.3.699

    Article  Google Scholar 

  • van der Meer MH, Hobbs JP, Jones GP, van Herwerden L (2012) Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish. PLoS One 7:e49660. doi:10.1371/journal.pone.0049660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • Veale AJ, Lavery SD (2012) The population genetic structure of the waratah anemone (Actinia tenebrosa) around New Zealand. New Zeal J Mar Freshw Res 46:523–536. doi:10.1080/00288330.2012.730053

    Article  Google Scholar 

  • Wabnitz C, Taylor M, Green EP, Razak T (2003) From ocean to aquarium: the global trade in marine ornamental species. UNEP-WCMC, Cambridge

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Wood EM (1985) Exploitation of coral reef fishes for the aquarium trade. Report to the Marine Conservation Society. Marine Conservation Society, UK

    Google Scholar 

Download references

Acknowledgments

This project was funded by the King Abdullah University of Science and Technology (KAUST) (Office of Competitive Research Funding award CRG-1-BER-002 and baseline funding to MLB). We would like to thank the Bioscience Core Lab and the Coastal and Marine Resources Core Lab of KAUST for technical assistance and logistic aid. We thank the many people involved in the Kimbe Bay sampling team and the KAUST Reef Ecology Lab for collecting anemone tissue samples. The manuscript was improved by comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remy Gatins.

Additional information

Communicated by B. W. Hoeksema

Remy Gatins and Pablo Saenz-Agudelo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatins, R., Saenz-Agudelo, P., Scott, A. et al. Development and characterization of new polymorphic microsatellite markers in four sea anemones: Entacmaea quadricolor, Heteractis magnifica, Stichodactyla gigantea, and Stichodactyla mertensii . Mar Biodiv 48, 1283–1290 (2018). https://doi.org/10.1007/s12526-016-0576-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0576-0

Keywords

Navigation