Skip to main content

Advertisement

Log in

Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morphological feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubules are filled by sediment, creating a mudball structure. Because of their unusual and sometimes featureless appearance, komokiaceans were frequently ignored or overlooked until they formal description in 1977. The most recent taxonomy places the Komokiacea within the Foraminifera based on general morphological features. To examine their taxonomic position at the molecular level, we analysed the SSU rDNA sequences of two species, Normanina conferta and Septuma ocotillo, obtained either with specific foraminiferal or universal eukaryotic primers. Many different sequences resulted from this investigation but none of them could clearly be attributed to komokiaceans. Although our study failed to confirm univocally that Komokiacea are foraminiferans, it revealed a huge eukaryotic richness associated with these organisms, comparable with the richness in the overall surrounding sediment. These observations suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bilofsky HS, Burks C, Fickett JW, Goad WB, Lewitter FI, Rindone WP, Swindell CD, Tung CS (1986) The GenBank genetic sequence databank. Nucleic Acids Res 14:1–4 doi:10.1093/nar/14.1.1

    Article  PubMed  CAS  Google Scholar 

  • Bowser SS, Habura A, Pawlowski J (2006) Molecular evolution of foraminifera. In: Katz L, Bhattacharya D (eds) Genomics and evolution of microbial eukaryotes. Oxford University Press, New York, pp 78–93

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep Sea Res Part I Oceanogr Res Pap 55:670–678 doi:10.1016/j.dsr.2008.02.004

    Article  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environment. Proc Natl Acad Sci USA 99:8324–8329 doi:10.1073/pnas.062169599

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, De Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662 doi:10.1073/pnas.062186399

    Article  PubMed  CAS  Google Scholar 

  • Epstein S, Lopez-Garcia P (2008) “Missing” protists: a molecular perspective. Biodivers Conserv 17:261–276 doi:10.1007/s10531-007-9250-y

    Article  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN, two graphic tools for sequence alignment and molecular phylogeny. CABIOS 12:543–548

    PubMed  CAS  Google Scholar 

  • Gooday AJ, Cook PL (1984) An association between komokiacean foraminiferans (Protozoa) and paludicelline ctenostomes (Bryozoa) from the abyssal northeast Atlantic. J Nat Hist 18:765–784 doi:10.1080/00222938400770641

    Article  Google Scholar 

  • Gooday AJ, Levin LA, Thomas CL, Hecker B (1992) The taxonomy, distribution and ecology of Bathysiphon filiformis and B. major (Protista, Foraminiferida) on the continental slope off North Carolina. J Foraminiferal Res 22:129–146

    Google Scholar 

  • Gooday AJ, Holzmann M, Guiard J, Cornelius N, Pawlowski J (2004) A new monothalamous foraminiferan from 1000–6300 m water depth in the Weddell Sea: morphological and molecular characterization. Deep Sea Res Part II 51:1603–1616

    Article  CAS  Google Scholar 

  • Gooday AJ, Kamenskaya OE, Cedhagen T (2007a) New and little-known Komokiacea (Foraminifera) from the bathyal and abyssal Weddell Sea and adjacent areas. Zool J Linn Soc 151:219–251 doi:10.1111/j.1096-3642.2007.00326.x

    Article  Google Scholar 

  • Gooday AJ, Cedhagen T, Kamenskaya OE, Cornelius N (2007b) The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr 54:1691–1719 doi:10.1016/j.dsr2.2007.07.003

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the central North Pacific. Deep Sea Res 21:185–209

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755 doi:10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  • Hughes JA, Gooday AJ (2004) The influence of dead Syringammina fragilissima (Xenophyophorea) tests on the distribution of benthic foraminifera in the Darwin Mounds region (NE Atlantic). Deep Sea Res Part I Oceanogr Res Pap 51:1741–1758

    Google Scholar 

  • Jumars PA, Gallagher ED (1982) Deep-sea community structure: tree plays on the benthic proscenium. In: Ernst WG, Morin JG (eds) The environment of the deep sea. Prentice-Hall, Englewood Cliffs, pp 217–255

    Google Scholar 

  • Kamenskaya OE (2000) Order Komokiida. In Alimov AF (ed) Protista: Manual on Zoology, Part 1. Nauka, St. Petersburg, pp 524–527

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676 doi:10.1016/j.tree.2005.09.005

    Article  PubMed  Google Scholar 

  • Levin LA (1991) Interactions between metazoans and large, agglutinated protozoans: implications for the community structure of deep-sea benthos. Am Zool 31:886–900

    Google Scholar 

  • Levin LA, Thomas CL (1988) The ecology of xenophyophores (Protista) on eastern Pacific seamounts. Deep-Sea Res 35:2003–2027 doi:10.1016/0198-0149(88)90122-7

    Article  Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedro-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607 doi:10.1038/35054537

    Article  PubMed  CAS  Google Scholar 

  • Moodley L, Middelburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol Prog Ser 236:23–29 doi:10.3354/meps236023

    Article  Google Scholar 

  • Norman AM (1978) On the genus Haliphysema, with the description of several forms apparently allied to it. Annals and Magazine of Natural History series 5 1:264–284

    Google Scholar 

  • Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ (2007) Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol 9:1233–1252 doi:10.1111/j.1462-2920.2007.01247.x

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski J (2000) Introduction to the molecular systematics of foraminifera. Micropaleontology 46(Suppl 1):1–12

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences using computer simulations. Proc Natl Acad Sci USA 98:13757–13762 doi:10.1073/pnas.241370698

    Article  PubMed  CAS  Google Scholar 

  • Sanders HL, Hessler RR, Hampson GR (1965) An introduction to the study of the deep-sea benthic faunal assemblages along the Gay Head, Bermuda transect. Deep Sea Res 12:845–867

    Google Scholar 

  • Schröder CJ, Medioli FS, Scott DB (1989) Fragile abyssal foraminifera (including new Komokiacea) from the Nares abyssal plain. Micropaleontology 35:10–48 doi:10.2307/1485535

    Article  Google Scholar 

  • Shires R, Gooday AJ, Jones AR (1994) A new large agglutinated foraminifer (Arboramminidae n. fam.) from a oligotrophic site in the abyssal northeast Atlantic. J Foraminiferal Res 24:149–157

    Article  Google Scholar 

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576 doi:10.1007/s00792-007-0068-z

    Article  PubMed  CAS  Google Scholar 

  • Tendal OS (1979) Aspects of the biology of Komokiacea and Xenophyophoria. Sarsia 64:13–17

    Google Scholar 

  • Tendal OS, Hessler RR (1977) An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Rep 14:165–194

    Google Scholar 

  • Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFC, Turley CM, Patching JW, Riemann F (1989) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biol Oceanogr 6:203–239

    Google Scholar 

  • Vickerman K (1992) The diversity and ecological significance of Protozoa. Biodivers Conserv 1:334–341

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Brandt, B. Hilbig, D. Fütterer, E. Fahrbach, and the Captain, officers and crew of the Polarstern for their assistance during the ANDEEP II and III expeditions. We also thank J. Blake for collecting komoki using elutriation technique during “ANDEEP II” expedition. This study was supported by the Swiss National Science Foundation (grant no. 3100A0-112645 to J.P.), the Danish Research Agency (Grant no. 95091435 to T.C.), and the UK Natural Environment Research Council (Grant no. NER/B/S/2001/00336 to A.J.G.). This is ANDEEP publication no. 119. This publication also contributes to the CoML field project CeDAMar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lecroq.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM Table 1

Sampling stations (N North, S South, W West, E East, BC Boxcore, MC Multicore)

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM Table 2

GenBank accession numbers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecroq, B., Gooday, A.J., Cedhagen, T. et al. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea). Mar Biodiv 39, 45–55 (2009). https://doi.org/10.1007/s12526-009-0006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-009-0006-7

Keywords

Navigation