Skip to main content
Log in

Above Ground Biomass Mapping of Tropical Forest of Tripura Using EOS-04 and ALOS-2 PALSAR-2 SAR Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Above Ground Biomass (AGB) is a vital factor in the forest ecosystem, closely linked to the carbon cycle and global climate change. Synthetic Aperture Radar (SAR) remote sensing is a potent tool for AGB quantification, due to its ability to penetrate vegetation canopies and its reliability for all-weather forest mapping and monitoring. The study used HH/HV dual-polarization SAR data from EOS-04 (C) and ALOS-2 PALSAR-2 (L) satellites to estimate AGB. Multiple linear regression-based statistics model was developed for AGB prediction by considering the best suited frequency and polarisation data for different forest density classes in the study area. The results revealed a strong correlation between AGB and HV backscatter from both the frequencies. The combined HV backscatter from both the sensors showed improvement in the goodness-of-fit (R2 > 0.5) with reduced error for all the forest density classes. The model estimated AGB was validated with the ground estimated AGB over 80 number of forest inventory plots (0.1 ha), and the overall root-mean-squared error corresponding to the estimated AGB was 32.02 Mg/ha. The model predicted versus ground estimated AGB showed a high correlation upto AGB density of 120 Mg/ha, beyond which underestimation was observed due to saturation of SAR backscatter at higher AGB density values. The AGB in the study ranged from about 10 to 200 Mg/ha. From the results, it was observed that the use of multi-frequency SAR data can be helpful in reducing error with consideration of forest categorisation in the AGB prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asner, G. P., Powell, G. V., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., et al. (2010). High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences, 107(38), 16738–16742. https://doi.org/10.1073/pnas.1004875107

    Article  Google Scholar 

  • Avitabile, V., Herold, M., Henry, M., & Schmullius, C. (2011). Mapping biomass with remote sensing: A comparison of methods for the case study of Uganda. Carbon Balance and Management, 6(1), 1–14. https://doi.org/10.1186/1750-0680-6-7

    Article  Google Scholar 

  • Baishya, R., Barik, S. K., & Upadhaya, K. (2009). Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology, 50(2), 295. https://doi.org/10.4236/oje.2016.610057

    Article  Google Scholar 

  • Balsamo, G., Agusti-Parareda, A., Albergel, C., Arduini, G., Beljaars, A., Bidlot, J., et al. (2018). Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sensing, 10(12), 2038. https://doi.org/10.3390/rs10122038

    Article  Google Scholar 

  • Banik, B., Deb, D., Deb, S., & Datta, B. K. (2018). Assessment of biomass and carbon stock in sal (Shorea robusta Gaertn.) forests under two management regimes in Tripura, Northeast India. Journal of Forest and Environmental Science, 34(3), 209–223. https://doi.org/10.7747/JFES.2018.34.3.209

    Article  Google Scholar 

  • Berninger, A., Lohberger, S., Stängel, M., & Siegert, F. (2018). SAR-based estimation of above-ground biomass and its changes in tropical forests of Kalimantan using L-and C-band. Remote Sensing, 10(6), 831. https://doi.org/10.3390/rs10060831

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A prime (FAO Forestry Paper 134), Rome: For the Food and Agriculture Organization of the United Nations.

  • Calders, K., Verbeeck, H., Burt, A., Origo, N., Nightingale, J., Malhi, Y., et al. (2022). Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecological Solutions and Evidence, 3(4), e12197. https://doi.org/10.1002/2688-8319.12197

    Article  Google Scholar 

  • Cartus, O., Santoro, M., Wegmüller, U., & Rommen, B. (2017). Estimating total aboveground, stem and branch biomass using multi-frequency SAR. In 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp) (pp. 1–3). IEEE. https://doi.org/10.1109/Multi-Temp.2017.8035231

  • Debnath, J., Das, N., Debnath, A., & Ahmed, I. (2022). Changing scenario of tropical forests due to shifting cultivation in the Indo-Burma bio-geographical hotspot: A study on three major hill ranges of Tripura, North-East India. In Mountain Landscapes in Transition: Effects of Land Use and Climate Change (pp. 501–516). https://doi.org/10.1007/978-3-030-70238-0_22

  • Fang, J., Tang, Y., & Son, Y. (2010). Why are East Asian ecosystems important for carbon cycle research? Science China Life Sciences, 53(7), 753. https://doi.org/10.1007/s11427-010-4032-2

    Article  Google Scholar 

  • FAO. (2009). BIOMASS. Retrieved on January 11, 2024 from https://www.fao.org/3/i1238e/i1238e00.pdf.

  • FAO. (2020). Global Forest Resources Assessment 2020: Main report. Rome. https://doi.org/10.4060/ca9825en

  • FAO. (2022). The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Rome: FAO. https://doi.org/10.4060/cb9360en

  • Fararoda, R., Reddy, R. S., Rajashekar, G., Chand, T. K., Jha, C. S., & Dadhwal, V. K. (2021). Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm. Ecological Informatics, 65, 101392. https://doi.org/10.1016/j.ecoinf.2021.101392

    Article  Google Scholar 

  • FSI (Forest Survey of India). (2021). India State of Forest Report 2021. Forest Survey of India, Ministry of Environment and Climate Change, Dehradun (Uttarakhand), India, 2019–2020.

  • FSI. (1996). Volume equations for forester of India, Nepal and Bhutan (pp. 1–249). Dehradun: Ministry of Environment and Forests Government of India.

  • Grace, J., Mitchard, E., & Gloor, E. (2014). Perturbations in the carbon budget of the tropics. Global Change Biology, 20(10), 3238–3255. https://doi.org/10.1111/gcb.12600

    Article  Google Scholar 

  • Guha, S., Pal, T., Nath, D. S., & Das, B. (2019). Comparison of biomass in natural and plantation dry forests in India. In GCEC 2017: Proceedings of the 1st Global Civil Engineering Conference (Vol. 1, pp. 995–1006). Singapore: Springer. https://doi.org/10.1007/978-981-10-8016-6_69

  • Herold, M., Carter, S., Avitabile, V., Espejo, A. B., Jonckheere, I., Lucas, R., et al. (2019). The role and need for space-based forest biomass-related measurements in environmental management and policy. Surveys in Geophysics, 40, 757–778. https://doi.org/10.1007/s10712-019-09510-6

    Article  Google Scholar 

  • IPCC. (2003). Good practice guidance for land use, land-use change, and forestry. Retrieved on January 11, 2024 from www.ipcc.ch/site/assets/uploads/2018/03/GPG_LULUCF_FULLEN.pdf

  • IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), National greenhouse gas inventories programme. IGES.

    Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 1–18). Cambridge University Press.

    Google Scholar 

  • IUCN ((International Union for Conservation of Nature). (2021). Deforestation and forest degradation, IUCN issues brief, 28 rue Mauverney, CH-1196 Gland, Switzerland. Retrieved on December 22, 2022, from https://www.iucn.org/resources/issues-brief/deforestation-and-forest-degradation.

  • Kumar, A., Kishore, B. S. P. C., Saikia, P., Deka, J., Bharali, S., Singha, L. B., et al. (2019). Tree diversity assessment and above ground forests biomass estimation using SAR remote sensing: A case study of higher altitude vegetation of North-East Himalayas, India. Physics and Chemistry of the Earth, Parts A/B/C, 111, 53–64. https://doi.org/10.1016/j.pce.2019.03.007

    Article  Google Scholar 

  • Liang, M., Duncanson, L., Silva, J. A., & Sedano, F. (2023). Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat. Remote Sensing of Environment, 284, 113367. https://doi.org/10.1016/j.rse.2022.113367

    Article  Google Scholar 

  • Lone, J. M., Sivasankar, T., Sarma, K. K., Qadir, A., & Raju, P. L. N. (2017). Influence of slope aspect on above ground biomass estimation using ALOS-2 data. International Journal of Science and Research6(6), 1422–1428. https://doi.org/10.21275/art20174506

  • Majumdar, K., Choudhary, B. K., & Datta, B. K. (2016). Aboveground woody biomass, carbon stocks potential in selected tropical forest patches of Tripura, Northwest India. Open Journal of Ecology, 6(10), 598. https://doi.org/10.4236/oje.2016.610057

    Article  Google Scholar 

  • McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S., et al. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21(6), 1902–1924. https://doi.org/10.1890/10-0697.1

    Article  Google Scholar 

  • Mitchard, E. T., Feldpausch, T. R., Brienen, R. J., Lopez-Gonzalez, G., Monteagudo, A., Baker, T. R., et al. (2014). Markedly divergent estimates of A mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 23(8), 935–946. https://doi.org/10.1111/geb.12168

    Article  Google Scholar 

  • Mitchard, E. T., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., et al. (2009). Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23), L23401. https://doi.org/10.1029/2009GL040692

    Article  Google Scholar 

  • Motohka, T., Isoguchi, O., Sakashita, M., & Shimada, M. (2018). Results of ALOS-2 PALSAR-2 calibration and validation after 3 years of operation. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 4169–4170). IEEE. https://doi.org/10.1109/IGARSS.2018.8519118

  • Musthafa, M., & Singh, G. (2022). Improving forest above-ground biomass retrieval using multi-sensor L-and C-Band SAR data and multi-temporal spaceborne LiDAR data. Frontiers in Forests and Global Change, 5, 822704. https://doi.org/10.3389/ffgc.2022.822704

    Article  Google Scholar 

  • Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402

    Article  CAS  Google Scholar 

  • Nath, A. J., Tiwari, B. K., Sileshi, G. W., Sahoo, U. K., Brahma, B., Deb, S., et al. (2019). Allometric models for estimation of forest biomass in North East India. Forests, 10(2), 103. https://doi.org/10.3390/f10020103

    Article  Google Scholar 

  • Padalia, H., Prakash, A., & Watham, T. (2023). Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecological Informatics, 77, 102234. https://doi.org/10.1016/j.ecoinf.2023.102234

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Prakash, A. J., Behera, M. D., Ghosh, S. M., Das, A., & Mishra, D. R. (2022). A new synergistic approach for Sentinel-1 and PALSAR-2 in a machine learning framework to predict aboveground biomass of a dense mangrove forest. Ecological Informatics, 72, 101900. https://doi.org/10.1016/j.ecoinf.2022.101900

    Article  Google Scholar 

  • Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J. F., Minh, D. H. T., et al. (2019). The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 227, 44–60. https://doi.org/10.1016/j.rse.2019.03.032

    Article  Google Scholar 

  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., et al. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108

    Article  Google Scholar 

  • SAC. (2023). EOS-04 Data Products Formats (ver. 1.2.4), July 2023, Document Number: SAC/SIPG/MDPD/EOS-04/SAR/DP/2021/TN-05/Sep.2021. Available on demand.

  • Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., Mura, M., Zolli, C., et al. (2017). The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sensing of Environment, 200, 63–73. https://doi.org/10.1016/j.rse.2017.07.038

    Article  Google Scholar 

  • Sharma, S. B., Kumar, S., & Hegde, N. (2023). Biomass and carbon recovery of secondary forest in a Montane Subtropical Forest of North Eastern India. Tropical Ecology, 64(1), 114–121. https://doi.org/10.1007/s42965-022-00246-w

    Article  CAS  Google Scholar 

  • Sinha, S., Mohan, S., Das, A. K., Sharma, L. K., Jeganathan, C., Santra, A., Mitra, S. S., & Nathawat, M. S. (2020). Multi-sensor approach integrating optical and multi-frequency synthetic aperture radar for carbon stock estimation over a tropical deciduous forest in India. Carbon Management, 11(1), 39–55. https://doi.org/10.1080/17583004.2019.1686931

    Article  CAS  Google Scholar 

  • Tian, L., Wu, X., Tao, Y., Li, M., Qian, C., Liao, L., & Fu, W. (2023). Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests, 14(6), 1086. https://doi.org/10.3390/f14061086

    Article  Google Scholar 

  • Tripura Forest Department. (2023). Forest of Tripura. Retrieved May 5, 2023 from https://forest.tripura.gov.in/forest-of-tripura.

  • Waikhom, A. C., Nath, A. J., & Yadava, P. S. (2018). Aboveground biomass and carbon stock in the largest sacred grove of Manipur, Northeast India. Journal of Forestry Research, 29, 425–428. https://doi.org/10.1007/s11676-017-0439-y

    Article  CAS  Google Scholar 

  • Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., et al. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/j.rse.2019.111383

    Article  Google Scholar 

  • Ziegler, A. D., Phelps, J., Yuen, J. Q., Webb, E. L., Lawrence, D., Fox, J. M., et al. (2012). Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Global Change Biology, 18(10), 3087–3099. https://doi.org/10.1111/j.1365-2486.2012.02747.x

    Article  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to the anonymous reviewers for their valuable inputs that greatly improved the quality of this research. Special thanks to the Tripura Forest Department for supporting in collection of ground truth data. Our heartfelt gratitude goes to Forest Survey of India (FSI) for generously providing forest cover and type maps. The authors wish to thank NRSC Data Centre (NDC), ISRO team for guidance and providing EOS-04 data and JAXA for ALOS-2 PALSAR-2 data.

Funding

The study is funded by Indian Space Research Organisation (ISRO), Department of Space, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conceptualization and generation of outputs. Dhruval Bhavsar and Kasturi Chakraborty made substantial contributions in field data collection, satellite data processing, development of the model, generation of AGB map and interpretation of output. Anup Kumar Das and Chakrapani Patnaik contributed in development of the model and validation  of the results. K. K. Sarma and S. P. Aggrawal contributed in overall drafting of the manuscript.

Corresponding author

Correspondence to Dhruval Bhavsar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, D., Das, A.K., Chakraborty, K. et al. Above Ground Biomass Mapping of Tropical Forest of Tripura Using EOS-04 and ALOS-2 PALSAR-2 SAR Data. J Indian Soc Remote Sens 52, 801–811 (2024). https://doi.org/10.1007/s12524-024-01838-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-024-01838-w

Keywords

Navigation