Skip to main content
Log in

Estimation of Above Ground Biomass for Central Indian Deciduous Forests Using ALOS PALSAR L-Band Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1 × 1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard, F., Eva, H. D., Mayaux, P., Stibig, H.-J., & Belward, A. (2004). Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochemical Cycles, 18(2), GB2008.

    Article  Google Scholar 

  • Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 3693–3715. doi:10.3390/rs6053693.

    Article  Google Scholar 

  • Baccini, A., Friedl, M. A., Woodcock, C. E., & Warbington, R. (2004). Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters, 31(10), L10501.

    Article  Google Scholar 

  • Bijalwan, A., Swamy, S. L., Sharma, C. M., Sharma, N. K., & Tiwari, A. K. (2010). Land-use, biomass and carbon estimation in dry tropical forest of Chhattisgarh region in India using satellite remote sensing and GIS. Journal of Forestry Research, 21(2), 161–170.

    Article  Google Scholar 

  • Carreiras, J. M. B., Melo, J. B., & Vasconcelos, M. J. (2013). Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sensing, 5(4), 1524–1548. doi:10.3390/rs5041524.

    Article  Google Scholar 

  • Champion, I., Dubois-Fernandez, P., Guyon, D., & Cottrel, M. (2008). Radar image texture as a function of forest stand age. International Journal of Remote Sensing, 29(6), 1795–1800.

    Article  Google Scholar 

  • Chhabra, A., & Dadhwal, V. K. (2004). Assessment of major pools and fluxes of carbon in Indian forests. Climatic Change, 64(3), 341–360.

    Article  Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2002). Growing stock-based forest biomass estimate for India. Biomass and Bioenergy, 22(3), 187–194.

    Article  Google Scholar 

  • Dadhwal, V. K., & Shah, A. (1997). Recent changes in forest phytomass carbon pool in India estimated using growing stock and remote sensing based forest inventories. Journal of Tropical Forestry, 13(4), 188–192.

    Google Scholar 

  • Dadhwal, V.K., Singh, S., & Patil, P. (2009). Assessment of phytomass carbon pools in forest ecosystems in India. NNRMS Bulletin, 41–57.

  • Dadhwal, V. K., Kushwaha, S. P. S., Singh, S., Patel, N. R., Nayak, R. K., Patil, P., Dutt, C. B. S., Murthy, M. S. R., Jha, C. S., Rajsekhar, G., Pujar, G. S., Trivedi, S., Sharma, N., Ali, M. M. (2011). Recent results from EO studies on Indian carbon cycle assessment. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3820, 3–9.

  • Devagiri, G. M., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A., Devakumar, A. S., & Hubballi, S. (2013). Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Tropical Ecology, 54(2), 149–165.

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185–190.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–415.

    Article  Google Scholar 

  • Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., Hughs M. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84(3), 393–410.

  • Foody, G. M., Green, R. M., Lucas, R. M., Curran, P. J., Honzak, M., & Do Amaral, I. (1997). Observations on the relationship between SIR-C radar backscatter and the biomass of regenerating tropical forests. International Journal of Remote Sensing, 18(3), 687–694.

    Article  Google Scholar 

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. J. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), 463–474.

    Article  Google Scholar 

  • FRI. (1996). Indian Woods. Dehradun.

  • FSI. (1996). Volume equations for forests of India, Nepal and Bhutan. Dehradun: Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • FSI. (2013). India state of the forest report (p. 252). Dehradun. http://www.fsi.nic.in/.

  • Hamdan, O., Khali Aziz, H., & Mohd Hasmadi, I. (2014). L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. Remote Sensing of Environment, 155, 69–78. doi:10.1016/j.rse.2014.04.029.

    Article  Google Scholar 

  • Haripriya, G. S. (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19(4), 245–258.

    Article  Google Scholar 

  • He, Q.-S., Cao, C.-X., Chen, E.-X., Sun, G.-Q., Ling, F.-L., Pang, Y., et al. (2012). Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China. International Journal of Remote Sensing, 33(3), 710–729. doi:10.1080/01431161.2011.577829.

    Article  Google Scholar 

  • Held, A., Ticehurst, C., Lymburner, L., & Williams, N. (2003). High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. International Journal of Remote Sensing, 24(13), 2739–2759.

    Article  Google Scholar 

  • Hese, S., Lucht, W., Schmullius, C., Barnsley, M., Dubayah, R., Knorr, D., Neumann, K., Riedel, T., Schröter, K. (2005). Global biomass mapping for an improved understanding of the CO2 balance—the Earth observation mission Carbon-3D. Remote Sensing of Environment, 94(1), 94–104.

  • Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945–958. doi:10.1111/j.1365-2486.2005.00955.x.

    Article  Google Scholar 

  • Houghton, R. A. (2007). Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313–347. doi:10.1146/annurev.earth.35.031306.140057.

    Article  Google Scholar 

  • Hyde, P., Dubayah, R., Walker, W., Blair, J. B., Hofton, M., & Hunsaker, C. (2006). Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sensing of Environment, 102(1), 63–73.

    Article  Google Scholar 

  • Imhoff, M. L., Johnson, P., Holford, W., Hyer, J., May, L., Lawrence, W., & Harcombe, P. (2000). BioSAR< TM>: an inexpensive airborne VHF multiband SAR system for vegetation biomass measurement. IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1458–1462.

    Article  Google Scholar 

  • Kale, M. P., Ravan, S. A., Roy, P. S., & Singh, S. (2009). Patterns of carbon sequestration in forests of western ghats and study of applicability of remote sensing in generating carbon credits through afforestation/reforestation. Journal of the Indian Society of Remote Sensing, 37(3), 457–471.

    Article  Google Scholar 

  • Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2011). Phytomass carbon pool of trees and forests in India. Climatic Change, 108(1–2), 243–259.

    Article  Google Scholar 

  • Kumar, S., Pandey, U., Kushwaha, S. P. S., & Chatterjee, R. S. (2012). Aboveground biomass estimation of tropical forest from Envisat ASAR data using modeling approach. Journal of Applied Remotesensing, 6, 1–18.

    Google Scholar 

  • Kuplich, T. M., Curran, P. J., & Atkinson, P. M. (2005). Relating SAR image texture to the biomass of regenerating tropical forests. International Journal of Remote Sensing, 26(21), 4829–4854.

    Article  Google Scholar 

  • Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411.

    Article  Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing‐based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328. doi:10.1080/01431160500486732.

    Article  Google Scholar 

  • Lucas, R. M., Mitchell, A. L., Rosenqvist, A., Proisy, C., Melius, A., & Ticehurst, C. (2007). The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(3), 245–264.

    Article  Google Scholar 

  • Madugundu, R., Nizalapur, V., & Jha, C. S. (2008). Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10(2), 211–219. doi:10.1016/j.jag.2007.11.004.

    Article  Google Scholar 

  • Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990–2005. Current Opinion in Environmental Sustainability, 2(4), 237–244.

    Article  Google Scholar 

  • Mani, S., & Parthasarathy, N. (2007). Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy, 31(5), 284–290.

    Article  Google Scholar 

  • McDonald, K. C., Dobson, M. C., & Ulaby, F. T. (1991). Modeling multi-frequency diurnal backscatter from a walnut orchard. IEEE Transactions on Geoscience and Remote Sensing, 29(6), 852–863.

    Article  Google Scholar 

  • Mohanraj, R., Saravanan, J., & Dhanakumar, S. (2011). Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. IForest, 4(2), 61–65. doi:10.3832/ifor0568-004.

    Article  Google Scholar 

  • Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., Nilus, R., Ong, R. C. (2011). Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. Forest Ecology and Management, 262(9), 1786–1798. doi:10.1016/j.foreco.2011.07.008.

  • Nelson, R. F., Kimes, D. S., Salas, W. A., & Routhier, M. (2000). Secondary forest age and tropical forest biomass estimation using thematic mapper imagery single-year tropical forest age classes, a surrogate for standing biomass, cannot be reliably identified using single-date tm imagery. Bioscience, 50(5), 419–431.

    Article  Google Scholar 

  • Pandey, U., Kushwaha, S. P. S., Kachhwaha, T. S., Kunwar, P., & Dadhwal, V. K. (2010). Potential of Envisat ASAR data for woody biomass assessment. Tropical Ecology, 51, 117–124.

    Google Scholar 

  • Patil, P., Singh, S., & Dadhwal, V. K. (2012). Above ground forest phytomass assessment in southern Gujarat. Journal of the Indian Society of Remote Sensing, 40(1), 37–46.

    Article  Google Scholar 

  • Peregon, A., & Yamagata, Y. (2013). The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sensing of Environment, 137, 139–146. doi:10.1016/j.rse.2013.06.012.

    Article  Google Scholar 

  • Quiñones, M. J., & Hoekman, D. H. (2004). Exploration of factors limiting biomass estimation by polarimetric radar in tropical forests. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 86–104.

    Article  Google Scholar 

  • Rai, S. N., & Proctor, J. (1986). Ecological studies on four rainforests in Karnataka, India. Journal of Ecology, 74, 439–454.

  • Ramachandran, A., Jayakumar, S., Haroon, R. M., Bhaskaran, A., & Arockiasamy, D. I. (2007). Carbon sequestration: estimation of carbon stock in natural forests using geospatial technology in the Eastern Ghats of Tamil Nadu, India. Current Science, 92(3), 323–331.

    Google Scholar 

  • Ravindranath, N. H., Somashekhar, B. S., & Gadgil, M. (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297–320.

    Article  Google Scholar 

  • Rosenqvist, A., Shimada, M., Ito, N., & Watanabe, M. (2007). ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3307–3316.

    Article  Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data — an investigation on possible approaches for natural forest. Journal of Biosciences, 21(4), 535–561.

    Article  Google Scholar 

  • Roy, P. S., Kushwaha, S. P. S., Musrthy, M. S. R., Roy, A., Kushwaha, D., Reddy, C. S., Behera, M.D., Singh, J. S., Jha, C. S., Porwal, M. C., Mathur, V. B., Padalia, H., Saran, S. (2012). Biodiversity characterisation at landscape level: national assessment. Indian institute of remote sensing, Dehradun, India.

  • Saatchi, S. S., & Moghaddam, M. (1995). Biomass distribution in boreal forest using SAR imagery. Proc.of the SPIE, Volume 2314, p. 437–448.

  • Santoro, M., Fransson, J. E. S., Eriksson, L. E. B., Magnusson, M., Ulander, L. M. H., & Olsson, H. (2009). Signatures of ALOS PALSAR L-band backscatter in Swedish forest. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4001–4019.

    Article  Google Scholar 

  • Santos, J. R., Lacruz, M. S. P., Araujo, L. S., & Keil, M. (2002). Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. International Journal of Remote Sensing, 23(7), 1217–1229.

    Article  Google Scholar 

  • Sarker, M. L. R., Nichol, J., Ahmad, B., Busu, I., & Rahman, A. A. (2012). Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 146–166. doi:10.1016/j.isprsjprs.2012.03.002.

    Article  Google Scholar 

  • Shimada, M., & Ohtaki, T. (2010). Generating large-scale high-quality SAR mosaic datasets: Application to PALSAR data for global monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 637–656. doi:10.1109/JSTARS.2010.2077619.

    Article  Google Scholar 

  • Shimada, M., Isoguchi, O., Tadono, T., & Isono, K. (2009). PALSAR radiometric and geometric calibration. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 3915–3932.

    Article  Google Scholar 

  • Singh, K., & Chand, P. (2012). Above-ground tree outside forest (TOF) phytomass and carbon estimation in the semi-arid region of southern Haryana : a synthesis approach of remote sensing and field data. Journal of Earth System Science, 121(6), 1469–1482.

    Article  Google Scholar 

  • Thenkabail, P. S., Stucky, N., Griscom, B. W., Ashton, M. S., Diels, J., Van Der Meer, B., & Enclona, E. (2004). Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. International Journal of Remote Sensing, 25(23), 5447–5472.

    Article  Google Scholar 

  • UN REDD (2011). UN REDD Programme Strategy 2011–2015. FAO, UNDP, UNEP.

  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J., & Ryu, S.-R. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93(3), 402–411.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Indian Space Research Organisation – Geosphere Biosphere Programme (ISRO-GBP) for funding the project and enabling us to carry out the study. We also thank Dr P.G. Diwakar, Deputy Director, Remote Sensing Application Area, NRSC and Dr. Y.V.N. Krishnamurthy, Director, Indian Institute of Remote Sensing, Deharadun, for the necessary support in the completion of the study. ALOS PALSAR data was provided by JAXA. Thanks are due to Dr. Masanobu Shimada (JAXA) for the provision of the PALSAR datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Chand Thumaty.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thumaty, K.C., Fararoda, R., Middinti, S. et al. Estimation of Above Ground Biomass for Central Indian Deciduous Forests Using ALOS PALSAR L-Band Data. J Indian Soc Remote Sens 44, 31–39 (2016). https://doi.org/10.1007/s12524-015-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0462-4

Keywords

Navigation