Skip to main content
Log in

Tree Aboveground Carbon Mapping in an Indian Tropical Moist Deciduous Forest Using Object-Based Image Analysis and Very High Resolution Satellite Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Forests’ capability to sequester and store a large amount of carbon makes it imperative to assess the carbon stocked in them. The present study aimed to map the tree aboveground carbon stock of sal (Shorea robusta) forests of Doon valley, India using object-based image analysis (OBIA) of WorldView-2, a very high resolution satellite imagery (VHRS). The study evaluated different pan-sharpening techniques for improving the spatial resolution of WorldView-2 multispectral imagery and found that the high pass filter resolution merge technique was better compared to others. OBIA was used for image segmentation and classification. It enabled the delineation of tree crowns and canopy projection area (CPA) calculation. The overall accuracy of image segmentation and classification were found to be 72.12% and 84.82% respectively. The study unveiled that there exists a strong relationship between diameter at breast height and the CPA of trees as well as CPA and tree carbon. The average forest carbon density in the study area was found to be 108 Mg ha−1. The study highlighted that OBIA of VHRS imagery coupled with field inventory can be efficiently used to quantify and map the tree carbon stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Subudhi, S.P., & Shah, R. (2010). Working plan of Kalsi soil conservation forest division, Kalsi Shivalik Circle (2009–10 to 2018–19). Government of Uttarakhand, Dehradun.

  • Bagheri, R., Shataee, S., & Erfanifard, S. Y. (2021). Canopy based aboveground biomass and carbon stock estimation of wild pistachio trees in arid woodlands using Geoeye-1 images. Journal of Agricultural Science and Technology, 23(1), 107–123.

    Google Scholar 

  • Balcik, F. B., & Sertel, E. (2007). Wavelet-based image fusion of Landsat ETM images: A case study for different landscape categories of İstanbul. In ISPRS commission VII, WG2 & WG7, conference on information extraction from SAR and optical data, with emphasis on developing countries, 16–18 May 2007 Istanbul, Turkey.

  • Baral, S. (2011). Mapping carbon stock using high resolution satellite images in sub-tropical forest of Nepal. Dissertation, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Delhi: Manager of Publications.

    Google Scholar 

  • Chavez, P. S., Jr., Berlin, G. L., & Sowers, L. B. (1982). Statistical method for selecting Landsat MSS ratios. Journal of Applied Photographic Engineering, 8(1), 23–30.

    Google Scholar 

  • Chavez, P. S., Jr., Sides, S. C., & Anderson, J. A. (1991). Comparison of three different methods to merge multiresolution and multispectral data—Landsat TM and SPOT Panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3), 295–303.

    Google Scholar 

  • Clinton, N., Holt, A., Yan, L., & Gong, P. (2008). An accuracy assessment measure for object based image segmentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1189–1194.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Dang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S., & Kumar, A. S. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50, 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010

    Article  Google Scholar 

  • FAO. (2010). Managing forests for climate change (p. 20). Rome, Italy: Food and Agriculture Organization.

    Google Scholar 

  • FRI. (2002). Indian woods: Their identification, properties and uses, Vol. I-VI (Revised edition). Forest Research Institute, Dehradun, Indian Council of Forestry Research and Education, Ministry of Environment and Forests, Government of India.

  • FSI. (1996). Volume equations for forests of India, Nepal and Bhutan. Forest Survey of India, Dehradun, Ministry of Environment and Forests, Government of India.

  • Ghosh, A., & Joshi, P. K. (2013). Assessment of pan-sharpened very high-resolution WorldView-2 images. International Journal of Remote Sensing, 34(23), 8336–8359. https://doi.org/10.1080/01431161.2013.838706

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023

    Article  CAS  Google Scholar 

  • Gonçalves, A. C., Sousa, A. M., & Mesquita, P. (2019). Functions for aboveground biomass estimation derived from satellite images data in Mediterranean agroforestry systems. Agroforestry Systems, 93, 1485–1500. https://doi.org/10.1007/s10457-018-0252-4

    Article  Google Scholar 

  • Haripriya, G. S. (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19(4), 245–258. https://doi.org/10.1016/S0961-9534(00)00040-4

    Article  Google Scholar 

  • Heyojoo, B. P., & Nandy, S. (2014). Estimation of above-ground phytomass and carbon in tree resources outside the forest (TROF): A geo-spatial approach. Banko Janakari, 24(1), 34–40. https://doi.org/10.3126/banko.v24i1.13488

    Article  Google Scholar 

  • Hussin, Y. A., Gilani, H., van Leeuwen, L., Murthy, M. S. R., Shah, R., Baral, S., Tsendbazar, N. E., Shrestha, S., Shah, S. K., & Qamer, F. M. (2014). Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Applied Geomatics, 6, 59–68. https://doi.org/10.1007/s12518-014-0126-z

    Article  Google Scholar 

  • IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. The Intergovernmental Panel on Climate Change, Kanagawa, Japan.

  • Jing, L., Hu, B., Noland, T., & Li, J. (2012). An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 88–98. https://doi.org/10.1016/j.isprsjprs.2012.04.003

    Article  Google Scholar 

  • Karna, Y. K., Hussin, Y. A., Gilani, H., Bronsveld, M. C., Murthy, M. S. R., Qamer, F. M., Karky, B. S., Bhattarai, T., Aigong, X., & Baniya, C. B. (2015). Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal. International Journal of Applied Earth Observation and Geoinformation, 38, 280–291. https://doi.org/10.1016/j.jag.2015.01.011

    Article  Google Scholar 

  • Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2010). Carbon storage and sequestration potential of selected tree species in India. Mitigation and Adaptation Strategies for Global Change, 15(5), 489–510. https://doi.org/10.1007/s11027-010-9230-5

    Article  Google Scholar 

  • Kushwaha, S. P. S., & Nandy, S. (2012). Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiversity and Conservation, 21(5), 1215–1228. https://doi.org/10.1007/s10531-012-0264-8

    Article  Google Scholar 

  • Kushwaha, S. P. S., Nandy, S., & Gupta, M. (2014). Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India. Environmental Monitoring and Assessment, 186(9), 5911–5920. https://doi.org/10.1007/s10661-014-3828-0

    Article  CAS  Google Scholar 

  • Maharjan, S. (2012). Estimation and mapping above ground woody carbon stocks using lidar data and digital camera imagery in the hilly forests of Gorkha, Nepal. Dissertation, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.

  • Manna, S., Nandy, S., Chanda, A., Akhand, A., Hazra, S., & Dadhwal, V. K. (2014). Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high-resolution satellite data. Journal of Applied Remote Sensing, 8(1), 083638. https://doi.org/10.1117/1.JRS.8.083638

    Article  Google Scholar 

  • Mareya, H. T., Tagwireyi, P., Ndaimani, H., Gara, T. W., & Gwenzi, D. (2018). Estimating tree crown area and aboveground biomass in miombo woodlands from high-resolution RGB-only imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 868–875. https://doi.org/10.1109/JSTARS.2018.2799386

    Article  Google Scholar 

  • Mbaabu, P. R., Hussin, Y. A., Weir, M., & Gilani, H. (2014). Quantification of carbon stock to understand two different forest management regimes in Kayar Khola watershed, Chitwan, Nepal. Journal of the Indian Society of Remote Sensing, 42, 745–754. https://doi.org/10.1007/s12524-014-0379-3

    Article  Google Scholar 

  • Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9(3), 311–321. https://doi.org/10.1016/j.jag.2006.10.002

    Article  Google Scholar 

  • Nandy, S., Ghosh, S., Kushwaha, S. P. S., & Kumar, A. S. (2019). Remote sensing-based forest biomass assessment in northwest Himalayan landscape (pp. 285–311). Singapore: Springer. https://doi.org/10.1007/978-981-13-2128-3_13

    Book  Google Scholar 

  • Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402

    Article  CAS  Google Scholar 

  • Nandy, S., Srinet, R., & Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using random forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, 48(14), e2021GL093799. https://doi.org/10.1029/2021GL093799

    Article  Google Scholar 

  • Navalgund, R. R., Kumar, A. S., & Nandy, S. (2019). Remote sensing of Northwest Himalayan ecosystems. Singapore: Springer. https://doi.org/10.1007/978-981-13-2128-3

    Book  Google Scholar 

  • Nikolakopoulos, K. G. (2008). Comparison of nine fusion techniques for very high resolution data. Photogrammetric Engineering and Remote Sensing, 74(5), 647–659. https://doi.org/10.14358/PERS.74.5.647

    Article  Google Scholar 

  • Padwick, C., Deskevich, M., Pacifici, F., & Smallwood, S. (2010). WorldView-2 pan-sharpening. In ASPRS 2010 annual conference, San Diego, California, April 26–30, 2010.

  • Pandey, S. K., Chand, N., Nandy, S., Muminov, A., Sharma, A., Ghosh, S., & Srinet, R. (2020). High-resolution mapping of forest carbon stock using object-based image analysis (OBIA) technique. Journal of the Indian Society of Remote Sensing, 48, 865–875. https://doi.org/10.1007/s12524-020-01121-8

    Article  Google Scholar 

  • Pillai, N. D., Nandy, S., Patel, N. R., Srinet, R., Watham, T., & Chauhan, P. (2019). Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodiversity and Conservation, 28(8–9), 2123–2141. https://doi.org/10.1007/s10531-019-01770-3

    Article  Google Scholar 

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., Jha, C. S., Sudhakar, S., Joshi, P. K., Sudhakar Reddy, Ch., Gupta, S., Pujar, G., Dutt, C. B. S., Srivastava, V. K., Porwal, M. C., Tripathi, P., Singh, J. S., Chitale, V., Skidmore, A. K.,…Ramachandran, R. M. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159. https://doi.org/10.1016/j.jag.2015.03.003

  • Satya, Upreti, D. K., & Nayaka, S. (2005). Shorea robusta—An excellent host tree for lichen growth in India. Current Science, 89(4), 594–595.

    Google Scholar 

  • Schowengerdt, R. A. (1980). Reconstruction of multispatial, multispectral image data using spatial frequency content. Photogrammetric Engineering and Remote Sensing, 46(10), 1325–1334.

    Google Scholar 

  • Shah, S. K., & Acharya, H. (2013). Modelling the relationship between canopy projection area and above-ground carbon stock of intermingled canopy trees using high-resolution satellite imagery. Banko Janakari, 23(2), 20–29.

    Article  Google Scholar 

  • Shimano, K. (1997). Analysis of the relationship between DBH and crown projection area using a new model. Journal of Forestry Research, 2(4), 237–242. https://doi.org/10.1007/BF02348322

    Article  Google Scholar 

  • Srinet, R., Nandy, S., Padalia, H., Ghosh, S., Watham, T., Patel, N. R., & Chauhan, P. (2020). Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. International Journal of Remote Sensing, 41(18), 7296–7309. https://doi.org/10.1080/01431161.2020.1766147

    Article  Google Scholar 

  • Srinet, R., Nandy, S., Watham, T., Padalia, H., & Patel, N. R. (2022). Coupling Earth observation and eddy covariance data in light-use efficiency based model for estimation of forest productivity. Geocarto International, 37(25), 7716–7732. https://doi.org/10.1080/10106049.2021.1983032

    Article  Google Scholar 

  • Troup, R. S. (1921). The silviculture of Indian trees (Vol. I). Clarendon Press.

    Google Scholar 

  • Tsendbazar, N. E. (2011). Object based image analysis of geo-eye VHR data to model above ground carbon stock in Himalayan mid-hill forests, Nepal. Dissertation, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.

  • Wangda, P., Hussin, Y. A., Bronsveld, M. C., & Karna, Y. K. (2019). Species stratification and upscaling of forest carbon estimates to landscape scale using GeoEye-1 image and lidar data in sub-tropical forests of Nepal. International Journal of Remote Sensing, 40(20), 7941–7965. https://doi.org/10.1080/01431161.2019.1607981

    Article  Google Scholar 

  • Watham, T., Srinet, R., Nandy, S., Padalia, H., Sinha, S. K., Patel, N. R., & Chauhan, P. (2020). Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry, 151, 291–311.

    Article  CAS  Google Scholar 

  • Workie, T. G. (2017). Estimating forest above-ground carbon using object-based analysis of very high spatial resolution satellite images. African Journal of Environmental Science and Technology, 11(12), 587–600. https://doi.org/10.5897/AJEST2017.2358

    Article  Google Scholar 

  • Yadav, B. K. V., & Nandy, S. (2015). Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environmental Monitoring and Assessment, 187(5), 1–12. https://doi.org/10.1007/s10661-015-4551-1

    Article  CAS  Google Scholar 

  • Yuhendra, Alimuddin, I., Sumantyo, J. T. S., & Kuze, H. (2012). Assessment of pan-shrpening methods applied to image fusion of remotely sensed multi-data band. International Journal of Applied Earth Observation and Geoinformation, 18, 165–175. https://doi.org/10.1016/j.jag.2012.01.013

    Article  Google Scholar 

  • Zhan, Q., Molenaar, M., Tempfli, K., & Shi, W. (2005). Quality assessment for geo-spatial objects derived from remotely sensed data. International Journal of Remote Sensing, 26(14), 2953–2974. https://doi.org/10.1080/01431160500057764

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Divisional Forest Officer and the officers and staff of Kalsi Soil and Water Conservation Division, Forest Department, Government of Uttarakhand, India for providing field support. The authors are grateful to the Head, Forestry and Ecology Department, Dean and Director, Indian Institute of Remote Sensing, ISRO, Dehradun for their support during the study.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

NS: Conceptualization, Methodology, Data curation, Investigation, Formal analysis, Validation, Field data collection, Visualization, Writing—original draft. SN: Conceptualization, Methodology, Supervision, Investigation, Formal analysis, Validation, Field data collection, Visualization. Writing—review and editing. LMvL: Conceptualization, Methodology, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Subrata Nandy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Nandy, S. & van Leeuwen, L.M. Tree Aboveground Carbon Mapping in an Indian Tropical Moist Deciduous Forest Using Object-Based Image Analysis and Very High Resolution Satellite Imagery. J Indian Soc Remote Sens 52, 723–734 (2024). https://doi.org/10.1007/s12524-023-01791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01791-0

Keywords

Navigation