Skip to main content

Advertisement

Log in

Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi—the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km2 of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m3/ha) while A. pendula forest with moderate density had the lowest (3.6 m3/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m3 while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R 2 = 0.84)/biomass (R 2 = 0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anaya, J. A., Chuvieco, E., & Orueta, A. P. (2009). Aboveground biomass assessment in Colombia: a remote sensing approach. Forest Ecology and Management, 257, 1237–1246.

    Article  Google Scholar 

  • Asrar, G., Kanemasu, E. T., Jackson, R. D., & Pinter, P. J. (1985). Estimation of total above-ground phytomass production using remotely sensed data. Remote Sensing of Environment, 17, 211–220.

    Article  Google Scholar 

  • Bhimaya, C. P., Jain, M. B., Kaul, R. N., & Ganguli, B. N. (1967). A study of age and habitat differences in the fuel yield of Prosopis juliflora. Indian Forester, 93(6), 355–359.

    Google Scholar 

  • Brown, S., & Lugo, A. E. (1984). Biomass of tropical forest: a new estimate based on forest volumes. Science, 223, 1290–1292.

    Article  CAS  Google Scholar 

  • Burkart, A. (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). (Part 1 and 2). Catalogue of the recognized species of Prosopis. Journal of the Arnold Arboretum, 57, 219249 and 450–525.

  • Chako, V. J. (1965). A manual of sampling techniques for forest surveys. New Delhi: Manager of Publications, Government of India.

    Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. New Delhi: Manager of Publications, Government of India.

    Google Scholar 

  • Chaturvedi, A. N., & Behl, H. M. (1996). Biomass production trials on sodic site. Indian Forester, 122, 439–455.

    Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2002). Growing stock based forest biomass estimate for India. Biomass and Bioenergy, 22, 187–194.

    Article  Google Scholar 

  • Cochran, W. G. (1963). Sampling techniques (2nd ed.). New York: John Wiley and Sons Inc.

    Google Scholar 

  • Curran, P. J. (1981). Multi-spectral remote sensing for estimation of biomass and productivity. In H. Smith (Ed.), Plants and Daylight Spectrum (pp. 65–69). New York: Academic Press.

    Google Scholar 

  • de Gier, A. (2003). New approach to woody biomass assessment in woodlands and shrub lands. In P. S. Roy (Ed.), Geoinformatics for Tropical Ecosystems (pp. 161–198). Dehradun: Bishen Singh Mahendra Pal Singh.

    Google Scholar 

  • El Fadl, M. A. (1997). Management of Prosopis juliflora for use in agroforestry systems in the Sudan. Tropical Forestry Reports 16. Helsinki, Finland: University of Helsinki.

    Google Scholar 

  • FAO. (2005). Global Forest Resources Assessment Update 2005, Terms and Definitions (Final Version) (p. 33). Rome: Forest Resources Assessment Program, Working Paper 83, Forest Resources Development Service, Forest Resources Division, FAO.

    Google Scholar 

  • Fatoyinbo, T. E., & Simard, M. (2013). Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. International Journal of Remote Sensing, 34(2), 668–681.

    Article  Google Scholar 

  • Felker, P., Cannell, G. H., Osborn, J. F., Clark, P. R., & Nash, P. (1983). Effects of irrigation on biomass production of 32 Prosopis (mesquite) accessions. Experimental Agriculture, 19, 187–198.

    Article  Google Scholar 

  • FSI. (1996). Volume Equations for Forests of India, Nepal and Bhutan. Dehradun: Forest Survey of India, Ministry of Environment & Forests, Government of India.

    Google Scholar 

  • FSI. (2011). India State of Forest Report 2011. Dehradun: Forest Survey of India, Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 13.

    Google Scholar 

  • Gurumurti, K., Raturi, D. P., & Bhandari, H. C. S. (1984). Biomass production in energy plantations of Prosopis juliflora. Indian Forester, 110, 879–894.

    Google Scholar 

  • Houghton, R. A. (2001). Tropical deforestation as a source of greenhouse gas emissions. In P. Mutinho & S. Schwartzman (Eds.), Tropical Deforestation and Climate Change (pp. 13–22). Belem: IPAM.

    Google Scholar 

  • Kaarakka, V., & Johansson, S. (1992). Yield and water use efficiency of 32 two-year-old Prosopis provenances under irrigation in Bura, eastern Kenya. Nitrogen Fixing Tree Research Reports, 10, 182–185.

    Google Scholar 

  • Khanna, V., & Sati, J. P. (2003). Some Selected Fauna of Asola-Bhatti Wildlife Sanctuary (Delhi). Fauna of Conservation Area No. 16, 1–70. Kolkata: Zoological Survey of India.

    Google Scholar 

  • Köhl, M., & Kushwaha, S. P. S. (1994). A four-phase sampling method for assessing standing volume using Landsat TM data aerial photographs and field measurements. Commonwealth Forestry Review, 73(1), 35–42.

    Google Scholar 

  • Kumar, J. (1995). A remote sensing and GIS approach for evolving management strategy of Asola-Bhatti Wildlife Sanctuary, P.G. Diploma Dissertation, Indian Institute of Remote Sensing, Dehradun, pp 8–11.

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2007). Remote sensing and image interpretation (6th ed.). New York: John Wiley and Sons Inc.

    Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328.

    Article  Google Scholar 

  • Lu, D., Mause, P., Brondizio, E., & Moran, E. (2004). Relationship between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon basin. Forest Ecology and Management, 198, 149–167.

    Article  Google Scholar 

  • Maghembe, J. A., Kariuki, E. M., & Haller, R. D. (1983). Biomass and nutrient accumulation in young Prosopis juliflora at Mombasa, Kenya. Agroforestry Systems, 1(4), 313–321.

    Article  Google Scholar 

  • Marland, G., Schlamadinger, B., & Leiby, P. (1997). Forest biomass based mitigation strategies: does the timing of carbon reductions matter? Critical Reviews in Environmental Science and Technology, 27, 213–226.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island.

    Google Scholar 

  • Naithani, H. B., Negi, S. S., Pal, M., Chandra, S., & Khanduri, V. P. (2006). Vegetation Survey and Inventorisation of Species in the Ridge Forest of Delhi. Delhi: Department of Forest and Wildlife, Govt. of Delhi.

    Google Scholar 

  • Ovington, J. D. (1968). Some factors affecting nutrient distribution within ecosystems. In F. E. Eckardt (Ed.), Functioning of terrestrial ecosystems of the primary production level (pp. 95–105). New York: United Nations. UNESCO Copenhagen Symposium.

    Google Scholar 

  • Pasiecznik, N. M., Felker, P., Harris, P. J. C., Harsh, L. N., Cruz, G., Tewari, J. C., Cadoret, K., & Maldonado, L. J. (2001). The Prosopis juliflora-Prosopis pallida complex: a monograph (p. 172). Coventry, UK: HDRA.

    Google Scholar 

  • Patenaude, G., Milne, R., & Dawson, T. P. (2005). Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol. Environmental Science and Policy, 8(2), 161–178.

    Article  CAS  Google Scholar 

  • Peregon, A., & Yamagata, Y. (2013). The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: a case study in Western Siberia. Remote Sensing of Environment, 137, 139–146.

    Article  Google Scholar 

  • Phua, M. H., & Saito, H. (2003). Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing, 29, 429–440.

    Article  Google Scholar 

  • Pragasan, L. A., & Karthick, A. (2013). Carbon stock sequestered by tree plantations in university campus at Coimbatore, India. International Journal of Environmental Sciences, 3(5), 1700–1710.

    Google Scholar 

  • Propastin, P. (2013). Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM + and MODIS data. GIScience & Remote Sensing. doi:10.1080/15481603.2013.850305.

    Google Scholar 

  • Ramachandra, T. V. (2010). Mapping of fuelwood trees using geoinformatics. Renewable and Sustainable Energy Reviews, 14, 642–654.

    Article  Google Scholar 

  • Richards, J. F., & Flint, E. P. (1994). Historic land use and carbon estimates for South and Southeast Asia 1880–1980 (p. 326). Tennessee, USA: ORNL/CDIAC-61, NDP-046, Oak Ridge National Laboratory.

    Google Scholar 

  • Riegelhaupt, E., Da Silva, I. B., Campello, F. B., & Pareyn, F. (1990). Volume, weight and product tables for Prosopis juliflora (Sw) DC at Rio Grande do Norte. In M. A. Habit & J. C. Saavedra (Eds.), The current state of knowledge on Prosopis juliflora (pp. 69–91). Rome, Italy: FAO.

    Google Scholar 

  • Rosillo-Calle, F., de Groot, P., Hemstock, S. L., & Woods, J. (2007). The biomass assessment handbook. London: Earthscan Publications.

    Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. Journal of Biosciences, 21(4), 535–561.

    Article  Google Scholar 

  • Sawarkar, V. B., & Hussain, S. A. (1996). Management planning for Asola-Bhatti Wildlife Sanctuary: Study Report (pp. 1–30). Dehradun: Wildlife Institute of India.

    Google Scholar 

  • Saxena, S. K. (1993). Ecology of Prosopis juliflora in the arid regions of India. In J. C. Tewari, N. M. Pasiecznik, L. N. Harsh, & P. J. C. Harish (Eds.), Prosopis species in the arid and semi-arid zones of India. Jodhpur, India: Conference proceeding, Central Arid Zone Research Institute.

    Google Scholar 

  • Saxena, A., Dasgupta, S., Srivastava, P. & Rawat, J.K. (2009). Estimation of growing stock of India’s forest and tree cover- a remote sensing and GIS based approach. XIII World Forestry Congress, 18–23 October 2009, Buenos Aires, Argentina, pp. 1–2.

  • Schlamadinger, B., & Marland, G. (1996). The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Bioenergy, 10(5/6), 275–300.

    Article  CAS  Google Scholar 

  • Singh, G., & Singh, N. T. (1993). Mesquite for the revegetation of salt lands. Karnal, Haryana, India: Bulletin No.18. Central Soil Salinity Research Institute.

    Google Scholar 

  • Singh, G., Abrol, I. P., & Cheema, S. S. (1990). Effects of irrigation on Prosopis juliflora and soil properties of an alkali soil. International Tree Crops Journal, 6, 81–99.

    Article  CAS  Google Scholar 

  • Steininger, M. K. (2000). Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 21(6–7), 1139–1157.

    Article  Google Scholar 

  • Tewari, V. P., & Wais, A. (1996). Growth modelling for Prosopis juliflora (Swartz.) DC. Annals of Biology, 12, 1–6.

    Google Scholar 

  • Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395–1416.

    Article  Google Scholar 

  • Whittaker, R. H. (1966). Forest dimensions and production in the Great Smoky Mountains. Ecology, 47, 103–121.

    Article  Google Scholar 

  • Wunder, W. G. (1966). Prosopis juliflora (P. africana) in the arid zone of Sudan. Khartoum, Sudan: Pamphlet of the Forest Research Educaction Project, Forest Department of Sudan No. 26. Forest Department and UNDP.

    Google Scholar 

  • Young, H. E., Strand, L., & Allenberger, R. (1964). Weight of wood substance for components of seven tree species. TAPPI, 48, 466–469.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Director of the Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, for the encouragement and support for this study. Grateful thanks are due to the Resource Survey and Management Division, Forest Research Institute, Dehradun, for the financial assistance for this project and the Deputy Conservator of Forests, Asola-Bhatti Wildlife Sanctuary, Delhi, for active collaboration and field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, S.P.S., Nandy, S. & Gupta, M. Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India. Environ Monit Assess 186, 5911–5920 (2014). https://doi.org/10.1007/s10661-014-3828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3828-0

Keywords

Navigation