Skip to main content

Advertisement

Log in

Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The global demand for food and bioenergy changes associated with land use and land cover change (LULCC) has raised concerns about the environment, global warming, and climate change. There is enough evidence that we are passing through human-induced changes which may lead to sixth mass extinction. Information of spatial representation of land use and land cover and its dynamics of landscape pattern and habitat organisation are vital for developing land use policy, adapting, and mitigating climate change impacts and nature-based solutions, including proposing areas for conservation. Spatial data is also a leading way of providing geographically linked or located data with the help of remote sensing (including drones), geographical information systems, Global Positioning Systems, and real-time in situ measurements. This article attempts to critically review the current research on the congruence of LULCC with climate and its processes. The article discusses current research on LULCC, its environmental consequences, and its impact on regulatory systems of the terrestrial biosphere, ecosystem services, atmospheric chemistry, and climate. Finally, it emphasises the need to evolve land use policy based on scientific analysis of LULCC to achieve sustainability goals and overall socioeconomic development with a special focus on climate change. The commitments of international agreements and protocols also require land use policy which accounts for concerns of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard, F., Eva, H., & Mayaux, P. (2001). Tropical forest mapping from coarse spatial resolution satellite data: Production and accuracy assessment issues. International Journal of Remote Sensing, 22(14), 2741–2762. https://doi.org/10.1080/01431160120548

    Article  Google Scholar 

  • Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2012). Climate and LULC change scenarios to study its impact on hydrological regime. Int Archives of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B8), 147–152. https://doi.org/10.5194/isprsarchives-XXXIX-B8-147-2012

    Article  Google Scholar 

  • Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., Thakur, P. K., & Roy, P. S. (2013). Run-off potential assessment over Indian landmass: A macro-scale hydrological modelling approach. Current Science, 104(7), 950–958.

    Google Scholar 

  • Ahlström, H., Hileman, J., Wang-Erlandsson, L., García, M. M., Moore, M. L., Jonas, K., Pranindita, A., Kuiper, J. J., Fetzer, I., Jaramillo, F., & Svedin, U. (2021). An earth system law perspective on governing social-hydrological systems in the Anthropocene. Earth System Governance, 10, 100120. https://doi.org/10.1016/j.esg.2021.100120

    Article  Google Scholar 

  • Alila, Y., Kuras, P. K., Schnorbus, M., & Hudson, R. (2009). Forests and floods: A new paradigm sheds light on age-old controversies. Water Resources Research, 45, W08416. https://doi.org/10.1029/2008WR007207

    Article  Google Scholar 

  • Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of The Total Environment, 644, 503–519. https://doi.org/10.1016/j.scitotenv.2018.07.017.

    Article  Google Scholar 

  • Anderies, J. M., Janssen, M. A., & Walker, B. H. (2002). Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems, 5, 23–44. https://doi.org/10.1007/s10021-001-0053-9.

    Article  Google Scholar 

  • Andréassian, V. (2004). Waters and forests: From historical controversy to scientific debate. Journal of Hydrology, 291, 1–27.

    Article  Google Scholar 

  • Angevine, W. M., White, A. B., Senff, C. J., Trainer, M., Banta, R. M., & Ayoub, M. A. (2003). Urban-rural contrasts in mixing height and cloudiness over Nashville in 1999. Journal of Geophysical Research: Atmospheres, 108(D3), 4092. https://doi.org/10.1029/2001JD001061.

    Article  Google Scholar 

  • Ashutosh, S., & Roy, P. S. (2021). Three decades of nationwide forest cover mapping using Indian remote sensing satellite data: a success story of monitoring forests for conservation in India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-020-01279-1

    Article  Google Scholar 

  • Baker, J. C. A., de Souza, C. D., Kubota, P. Y., Buermann, W., Coelho, C. A. S., Andrews, M. B., Gloor, M., Garcia-Carreras, L., Figueroa, S. N., & Spracklen, D. V. (2021). An assessment of land-atmosphere interactions over South America using satellites, reanalysis, and two global climate models. Journal of Hydrometeorology, 22(4), 905–922.

    Article  Google Scholar 

  • Baker, W. L., & Williams, M. A. (2015). Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure. Frontiers in Ecology and Evolution, 2, 88.

    Article  Google Scholar 

  • Balaji, G., Sharma, G., Shiva, S., & Jayanth, R. (2022). Forest cover in India: A victim of technicalities. Ecological Economics, 193, 107306. https://doi.org/10.1016/j.ecolecon.2021.107306

    Article  Google Scholar 

  • Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., & Mahood, A. L. (2017). Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2946–2951. https://doi.org/10.1073/pnas.1617394114

    Article  Google Scholar 

  • Banger, K., Tian, H., Zhang, B., Lu, C., Ren, W., & Tao, B. (2015). Biosphere–atmosphere exchange of methane in India as influenced by multiple environmental changes during 1901–2010. Atmospheric Environment, 119, 192–200. https://doi.org/10.1016/j.atmosenv.2015.06.008

    Article  Google Scholar 

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L., & Shabel, A. B. (2004). Assessing the causes of Late Pleistocene extinctions on the continents. Science, 306, 70–75.

    Article  Google Scholar 

  • Barton, E. J., Taylor, C. M., Parker, D. J., Turner, A. G., Belušić, D., Böing, S. J., Brooke, J. K., Harlow, R. C., Harris, P. P., Hunt, K., & Jayakumar, A. (2020). A case-study of land–atmosphere coupling during monsoon onset in northern India. Quarterly Journal of the Royal Meteorological Society, 146(731), 2891–2905.

    Article  Google Scholar 

  • Behera, M. D., Behera, S. K., & Sharma, S. (2019). Recent advances in biodiversity and climate change studies in India. Biodiversity and Conservation, 28(8–9), 1943–1951.

    Article  Google Scholar 

  • Behera, M. D., & Roy, P. S. (2019). Pattern of distribution of angiosperm plant richness along latitudinal and longitudinal gradients of India. Biodiversity and Conservation, 28(8–9), 2035–2048.

    Article  Google Scholar 

  • Bello, S. A., Yu, S. S., Wang, C., Adam, J. M., & Li, J. (2020). Review: deep learning on 3D point clouds. Remote Sensing, 12, 1729.

    Article  Google Scholar 

  • Bennett, K., Boreham, S., Sharp, M., & Switsur, V. (1992). Holocene history of environment, vegetation and human settlement on catta ness, lunnasting Shetland. Journal of Ecology, 80(2), 241–273. https://doi.org/10.2307/2261010

    Article  Google Scholar 

  • Bergkamp, G., Orlando, B., & Burton, I. (2003). Change: adaption of water resources management to climate change. World Conservation Union (IUCN).

    Google Scholar 

  • Best, A., Zhang, L., McMahon, T., Western, A., & Vertessy, R. (2003). A critical review of paired watershed studies with reference to seasonal flows and climatic variability. CSIRO Land and Water Technical Report 25/03. Murray-Darling Basin Commission, Canberra.

  • Betts, R. A., Golding, N., Gonzalez, P., Gornall, J., Kahana, R., Kay, G., Mitchell, L., & Wiltshire, A. (2015). Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways. Biogeosciences, 12(5), 1317–1338. https://doi.org/10.5194/bg-12-1317-2015

    Article  Google Scholar 

  • Bhatia, A., Pathak, H., & Aggarwal, P. J. C. S. (2004). Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Current Science, 87, 317–324.

    Google Scholar 

  • Bhunia, G. S., & Shit, P. K. (2021). Chapter 1 - Recent development and future challenges of geospatial approaches for enhancing forest inventories. In P. K. Shit, H. R. Pourghasemi, P. P. Adhikary, G. S. Bhunia, & V. P. Sati (Eds.), Forest Resources Resilience and Conflicts (pp. 3–16). Elsevier. https://doi.org/10.1016/B978-0-12-822931-6.00001-0

    Chapter  Google Scholar 

  • Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand, H., Tiwari, S., Srivastava, A. K., Bisht, D. S., & Gustafsson, Ö. (2019). Air quality in megacity Delhi affected by countryside biomass burning. Nature Sustainability, 2(3), 200–205. https://doi.org/10.1038/s41893-019-0219-0

    Article  Google Scholar 

  • Birthal, P. S., Hazrana, J., Negi, D. S., & Pandey, G. (2021). Benefits of irrigation against heat stress in agriculture: evidence from wheat crop in India. Agricultural Water Management, 255, 106950.

    Article  Google Scholar 

  • Bonan, G. (2008). Land use and land-cover change. In Ecological climatology: concepts and applications. Cambridge University Press. pp. 432–469. https://doi.org/10.1017/CBO9780511805530.028.

  • Bosch, J. M., & Hewlett, J. D. (1982). A review of watershed experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23.

    Article  Google Scholar 

  • Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. PNAS, 11(17), 6347–6352. https://doi.org/10.1073/pnas.1305499111

    Article  Google Scholar 

  • Bryant, C. (2008). Proportion of deliberate bushfires in Australia. https://cdn.factcheck.org/UploadedFiles/Causes-of-bushfires-in-Australia-Response-for-factcheck-Approved.pdf (visited 30th March 2022).

  • Buechel, M., Slater, L., & Dadson, S. (2022). Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Communications Earth & Environment, 3(6), 1–10. https://doi.org/10.1038/s43247-021-00334-0

    Article  Google Scholar 

  • Burger, K., & Smith, H. P. (2004). Natural rubber planting policies and the outlook for prices and consumption. In: Jewtragoon P,Thainugul W (eds) Full texts of the international rubber tree conference.

  • Burt, T. P., Howden, N. J. K., McDonnell, J. J., Jones, J. A., & Hancock, J. R. (2015). Seeing the climate through the trees: Observing climate and forestry impacts on streamflow using a 60-year record. Hydrological Processes, 29(3), 473–480. https://doi.org/10.1002/hyp.10406

    Article  Google Scholar 

  • Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriartea, M., & DeFries, R. (2016). Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 39, 205–219. https://doi.org/10.1016/j.gloenvcha.2016.05.005

    Article  Google Scholar 

  • Cavender-Bares, J., Schneider, F. D., Santos, M. J., et al. (2022). Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nature Ecology and Evolution. https://doi.org/10.1038/s41559-022-01702-5

    Article  Google Scholar 

  • CCI_Land-Cover. (2017). Cci land cover - S2 prototype land-cover 20m map of Africa. ESA. Journal of Remote Sensing, 33.

  • Chakraborty, T. C., Sarangi, C., & Lee, X. (2021). Reduction in human activity can enhance the urban heat island: Insights from the COVID-19 lockdown. Environmental Research Letters, 16(5), 054060.

    Article  Google Scholar 

  • Chakraborty, T., Sarangi, C., & Tripathi, S. N. (2017). Understanding diurnality and inter-seasonality of a sub-tropical urban heat island. Boundary-Layer Meteorology, 163(2), 287–309.

    Article  Google Scholar 

  • Chase, T. N., Pielke, R. A., Sr., Kittel, T. G. F., et al. (2000). Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dynamics, 16, 93–105.

    Article  Google Scholar 

  • Chen, H., Fleskens, L., Baartman, J., Wang, F., Moolenaar, S., & Ritsema, C. (2020a). Impacts of land use change and climatic effects on streamflow in the Chinese loess plateau: a meta-analysis. Science of the Total Environment, 703, 134989. https://doi.org/10.1016/j.scitotenv.2019.134989

    Article  Google Scholar 

  • Chen, H., Huang, J. J., Dash, S. S., McBean, E., Wei, Y., & Li, H. (2022). Assessing the impact of urbanization on urban evapotranspiration and its components using a novel four-source energy balance model. Agricultural and Forest Meteorology, 316, 108853. https://doi.org/10.1016/j.agrformet.2022.108853

    Article  Google Scholar 

  • Chen, J., Chen, J., Liao, A., et al. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7–27.

    Article  Google Scholar 

  • Chen, S., Feng, Y., Tong, X., Liu, S., Xie, H., Gao, C., & Lei, Z. (2020b). Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Science of the Total Environment, 712, 136509. https://doi.org/10.1016/j.scitotenv.2020.136509

    Article  Google Scholar 

  • Chen, W., Zhang, Y., Pengwang, C., & Gao, W. (2017). Evaluation of urbanization dynamics and its impacts on surface heat Islands: A case study of Beijing China. Remote Sensing, 9(5), 453. https://doi.org/10.3390/rs9050453

    Article  Google Scholar 

  • Chitale, V. S., Behera, M. D., & Roy, P. S. (2019). Deciphering plant richness using satellite remote sensing: A study from three biodiversity hotspots. Biodiversity and Conservation, 28(8–9), 2183–2196.

    Article  Google Scholar 

  • Cole, C. V., et al. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems, 49(1), 221–228. https://doi.org/10.1023/A:1009731711346

    Article  Google Scholar 

  • Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A., D’Ortenzio, F., Gentili, B., & Schmechtig, C. (2021). Deep chlorophyll maxima in the global ocean: Occurrences, drivers and characteristics. Global Biogeochemical Cycles, 35, 006759. https://doi.org/10.1029/2020GB006759

    Article  Google Scholar 

  • Costanza, R. D., Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., Oneill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260.

    Article  Google Scholar 

  • Crompton, O., Correa, D., Duncan, J., & Thompson, S. (2021). Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in Maritime Southeast Asia. Environmental Research Letters, 16, 114018. https://doi.org/10.1088/1748-9326/ac2fdc

    Article  Google Scholar 

  • Cullis, J. D. S., Horn, A., Rossouw, N., Fisher-Jeffes, L., Kunneke, M. M., & Hoffman, W. (2019). Urbanisation climate change and its impact on water quality and economic risks in a water scarce and rapidly urbanising catchment: case study of the Berg River Catchment. H2Open Journal, 2(1), 146–167. https://doi.org/10.2166/h2oj.2019.027

    Article  Google Scholar 

  • Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guégan, J. F., Hawkins, B. A., Kaufman, D. M., Kerr, J. T., Oberdorff, T., O’Brien, E., & Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad- scale variation in taxonomic richness. Ecology Letters, 7(12), 1121–1134.

    Article  Google Scholar 

  • D’Amico, G., Szopik-Depczyńska, K., Beltramo, R., D’Adamo, I., & Ioppolo, G. (2022). Smart and sustainable bioeconomy platform: A new approach towards Sustainability. Sustainability, 14, 466. https://doi.org/10.3390/su14010466

    Article  Google Scholar 

  • Dale, V. H. (1997). The relationship between land-use changes and climate change. Ecological Applications, 7, 753–769. https://doi.org/10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2

    Article  Google Scholar 

  • Dario, S., He, Y., Bernhard, T., Sarah, V., Rabani, A., & Navneet, K. (2021). Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 97–111. https://doi.org/10.1016/j.isprsjprs.2021.06.005

    Article  Google Scholar 

  • Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R., Srivastava, S. K., Roy, P. S., Thakur, P., Agrawal, S. P., & Krishnamurthy, Y. V. N. (2019). Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian River basins during 1985–2005 using variable infiltration capacity approach. Journal of Earth System Science. https://doi.org/10.1007/s12040-018-0921-8

    Article  Google Scholar 

  • David, M. J. S. B., Balch, J. K., Artaxo, P., et al. (2009). Fire in the Earth system. Science, 324(5926), 481–484. https://doi.org/10.1126/science.1163886

    Article  Google Scholar 

  • Davidson, E. A., De Araújo, A. C., Artaxo, P., et al. (2012). The Amazon basin in transition. Nature, 481, 321.

    Article  Google Scholar 

  • Drever, C. R., Peterson, G., Messier, C., Bergeron, Y., & Flannigan, M. (2006). Can forest management based on natural disturbance maintain ecological resilience? Canadian Journal of Forest Research, 36, 2285–2299.

    Article  Google Scholar 

  • De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B., & Coppin, P. (2015). A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24, 539–548.

    Article  Google Scholar 

  • de Oliveira Serrão, E. A., Silva, M. T., Ferreira, T. R., et al. (2022). Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research, 37(1), 54–69. https://doi.org/10.1016/j.ijsrc.2021.04.002

    Article  Google Scholar 

  • DeFries, R., & Eshleman, K. N. (2004). Land-use change and hydrologic processes: A major focus for the future. Hydrological Processes, 18, 2183–2186.

    Article  Google Scholar 

  • Devanand, A., Huang, M., Ashfaq, M., Barik, B., & Ghosh, S. (2019). Choice of irrigation water management practice affects indian summer monsoon rainfall and its extremes. Geophysical Research Letters, 46(15), 9126–9135.

    Article  Google Scholar 

  • Dolman, A. J., & Verhagen, A., et al. (2003). Land use and global environmental change. In A. J. Dolman (Ed.), Global Environmental Change and Land Use (pp. 3–13). 2003 Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Duraisamy, V., Bendapudi, R., & Jadhav, A. (2018). Identifying hotspots in land use land cover change and the drivers in a semi-arid region of India. Environmental Monitoring and Assessment, 190, 535. https://doi.org/10.1007/s10661-018-6919-5

    Article  Google Scholar 

  • Dwarakish, G. S., & Ganasri, B. P. (2015). Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1), 1115691. https://doi.org/10.1080/23312041.2015.1115691

    Article  Google Scholar 

  • Eidenshink, J. C., & Faundeen, J. L. (1994). The 1 km AVHRR global land data set: first stages in implementation. International Journal of Remote Sensing, 15(17), 3443–3462. https://doi.org/10.1080/01431169408954339

    Article  Google Scholar 

  • Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439–447.

    Article  Google Scholar 

  • Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488–494.

    Article  Google Scholar 

  • Emilsson, T., & Ode Sang, A. (2017). Impacts of climate change on urban areas and nature-based solutions for adaptation. In N. Kabisch, H. Korn, J. Stadler, & A. Bonn (Eds.), Nature-based solutions to climate change adaptation in urban areas. Theory and practice of urban sustainability transitions. Springer. https://doi.org/10.1007/978-3-319-56091-5_2

    Chapter  Google Scholar 

  • Fang, O., & Zhang, Q. B. (2018). Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 25, 245–253. https://doi.org/10.1111/gcb.14470

    Article  Google Scholar 

  • FAO. (2016). State of the world’s forest. Food and Agriculture Organization of the United States, pp. 125.

  • Farinosi, F., Arias, M. E., Lee, E., Longo, M., Pereira, F. F., Livino, A., et al. (2019). Future climate and land use change impacts on river flows in the Tapajós Basin in the Brazilian Amazon. Earth’s Future, 7, 993–1017. https://doi.org/10.1029/2019EF001198

    Article  Google Scholar 

  • Fastré, C., van Zeist, W. J., Watson, J. E. M., & Visconti, P. (2021). Integrated spatial planning for biodiversity conservation and food production. One Earth, 4(11), 1635–1644. https://doi.org/10.1016/j.oneear.2021.10.014

    Article  Google Scholar 

  • Feng, Y., Huang, X., & Sester, M. (2022). Extraction and analysis of natural disaster related VGI from social media: Review, opportunities and challenges. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2022.2048835

    Article  Google Scholar 

  • Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R., & Ferreira, M. T. (2020). Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. CATENA, 188(104466), 1–14. https://doi.org/10.1016/j.catena.2020.104466

    Article  Google Scholar 

  • Foley, J. A., Kucharik, C. J., Twine, T. E., & Coe, M. T. (2004). Land use, land cover, and climate change across the Mississippi Basin: Impacts on selected land and water resources. Ecosystems and land use change. Geophysical Monograph Series, 153, 249–261.

    Google Scholar 

  • Forsell, N., Turkovska, O., Gusti, M., Obersteiner, M., Elzen, M., & Havlik, P. (2016). Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance and Management, 11(1), 26. https://doi.org/10.1186/s13021-016-0068-3

    Article  Google Scholar 

  • Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS land processes DAAC. Accessed 2022-03-16 from https://doi.org/10.5067/MODIS/MCD12Q1.006.

  • Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., & Schaaf, C. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1–2), 287–302.

    Article  Google Scholar 

  • FSI (Forest Survey of India). (2021). India State of Forest Report 2021. Published by Forest Survey of India, Dehra Dun. Vol. 17, 2019–2020. ISBN 978–81–950073–1–8.

  • Ganeshan, M., Murtugudde, R., & Imhoff, M. L. (2013). A multi-city analysis of the UHI-influence on warm season rainfall. Urban Climate, 6, 1–23.

    Article  Google Scholar 

  • Gangal, K., Sarson, G. R., & Shukurov, A. (2014). The near-eastern roots of the Neolithic in South Asia. PLoS ONE, 9(5), e95714. https://doi.org/10.1371/journal.pone.0095714

    Article  Google Scholar 

  • Gao, Z., Xhang, Z., & Zhang, X. (2009). Responses of water yield to changes in vegetation at a temporal scale. Frontiers of Forestry in China, 4(1), 53–59. https://doi.org/10.1007/s11461-009-0008-4

    Article  Google Scholar 

  • Garg, V., Aggarwal, S. P., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2017). Assessment of land use land cover change impact on hydrological regime of a basin. Environmental Earth Sciences, 76, 635. https://doi.org/10.1007/s12665-017-6976-z

    Article  Google Scholar 

  • Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., & Srivastav, S. K. (2019). Human-induced land use land cover change and its impact on hydrology. HydroResearch, 1, 48–56.

    Article  Google Scholar 

  • Gebremicael, T. G., Mohamed, Y. A., & Van der Zaag, P. (2019). Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment, 660, 1155–1167. https://doi.org/10.1016/j.scitotenv.2019.01.085

    Article  Google Scholar 

  • Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. BioScience, 52(2), 143–150. https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2

    Article  Google Scholar 

  • Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732–16737. https://doi.org/10.1073/pnas.0910275107

    Article  Google Scholar 

  • Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific Reports, 9(1), 1–10.

    Article  Google Scholar 

  • Goldewijk, K. K., & Ramankutty, N. (2009). Land use changes during the past 300 years. Land use, land cover and soil sciences – Vol. I. (Ed; Verheye, W.H.) UNESCO-EOLSS eBook. Encyclopedia of Life Support Systems.

  • Goldewijk, K. K., Beusen, A., Doelman, J., & Stehfest, E. (2017). Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth System Science Data, 9, 927–953. https://doi.org/10.5194/essd-9-927-2017

    Article  Google Scholar 

  • Golroudbary, V. R., Zeng, Y., Mannaerts, C. M., & Su, Z. B. (2018). Urban impacts on air temperature and precipitation over The Netherlands. Climate Research, 75(2), 95–109.

    Article  Google Scholar 

  • Gong, P., Liu, H., Zhang, M., et al. (2019). Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6), 370–373.

    Article  Google Scholar 

  • Gong, P., Wang, J., Yu, L., et al. (2012). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat Tm and Etm+ data. International Journal of Remote Sensing, 34(7), 2607–2654.

    Article  Google Scholar 

  • Goodchild, M. F. (2009). Geographic information system. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 1231–1236). Springer.

    Chapter  Google Scholar 

  • Gopalakrishna, T., Guy, L., Jesús, A. G., David, B., Roy, P. S., Joshi, P. K., et al. (2022). Existing land uses constrain climate change mitigation potential of forest restoration in India. Conservation Letters, 15, 2. https://doi.org/10.1111/conl.12867.

    Article  Google Scholar 

  • Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current Science, 90(3), 346–353.

    Google Scholar 

  • Griffiths, D., & Boehm, J. (2019). A review on deep learning techniques for 3D sensed data classification. Remote Sensing, 11, 1499.

    Article  Google Scholar 

  • Griscoma, B. W., Adamsa, J., Ellisa, P. W., Houghtonc, R. A., Lomaxa, G., et al. (2017). Nature climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114

    Article  Google Scholar 

  • Gunderson, L. H. (2000). Ecological resilience-in theory and application. Annual Review of Ecology and Systematics, 31, 425–439.

    Article  Google Scholar 

  • Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Hydrological responses to land use/cover changes in the olifants basin, South Africa. MDPI Water, 8(12), 588. https://doi.org/10.3390/w8120588

    Article  Google Scholar 

  • Halder, S., Saha, S. K., Dirmeyer, P. A., Chase, T. N., & Goswami, B. N. (2016). Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrology and Earth System Sciences, 20(5), 1765–1784.

    Article  Google Scholar 

  • Han, W., Li, Z., Wu, F., Zhang, Y., Guo, J., Su, T., Cribb, M., Fan, J., Chen, T., Wei, J., & Lee, S. S. (2020). The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmospheric Chemistry and Physics, 20(11), 6479–6493.

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  • Haughan, A. E., Pettorelli, N., Potts, S. G., & Senapathi, D. (2022). Determining the role of climate change in India’s past forest loss. Global Change Biology. https://doi.org/10.1111/gcb.16161

    Article  Google Scholar 

  • Heald, C. L., & Spracklen, D. V. (2015). Land use change impacts on air quality and climate. Chemical Reviews, 115, 4476–4496. https://doi.org/10.1021/cr500446g,2015

    Article  Google Scholar 

  • Hinge, G., Surampalli, R. Y., & Goyal, M. K. (2018). Regional carbon fluxes from land-use conversion and land-use management in Northeast India. Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 04018016. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000404

    Article  Google Scholar 

  • Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232–235.

    Article  Google Scholar 

  • Hogan, D. J. (2007). Human dimensions of global environmental change. Ambiente & Sociedade, 10(2), 161–166. https://doi.org/10.1590/S1414-753X2007000200011

    Article  Google Scholar 

  • Holmgren, M., Hirota, M., Van Nes, E. H., & Scheffer, M. (2013). Effects of interannual climate variability on tropical tree cover. Nature Climate Change, 3, 755.

    Article  Google Scholar 

  • Homer, C. H., Fry, J. A., & Barnes, C. A. (2012). The national land cover database. US Geological Survey Fact Sheet, 3020, 1–4.

    Google Scholar 

  • Houghton, R. A. (1991). Releases of carbon to the atmosphere from degradation of forests in tropical Asia. Canadian Journal of Forest Research, 21(1), 132–142. https://doi.org/10.1139/x91-017

    Article  Google Scholar 

  • Houghton, R. A. (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus, 51B, 298–313.

    Article  Google Scholar 

  • Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., Le Quéré, C., & Ramankutty, N. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125–5142. https://doi.org/10.5194/bg-9-5125-2012

    Article  Google Scholar 

  • https://earth.org/sixth-mass-extinction-of-wildlife-accelerating/ Accessed 17 Jan 2022.

  • https://blogs.worldbank.org/opendata/chart-globally-70-freshwater-used-agriculture

  • Hua, F., Bruijnzeel, L. A., et al. (2022). The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science. https://doi.org/10.1126/science.abl4649

    Article  Google Scholar 

  • Huang, X., Hao, L., Sun, G., Yang, Z.-L., Li, W., & Chen, D. (2022). Urbanization aggravates effects of global warming on local atmospheric drying. Geophysical Research Letters, 49, e2021GL095709. https://doi.org/10.1029/2021GL095709

    Article  Google Scholar 

  • IPBES, (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental Science-policy platform on biodiversity and ecosystem services. S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (Eds.). IPBES secretariat, Bonn, p. 56.

  • IPCC, et al. (2007). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, & M. Marquis (Eds.), Climate change: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, pp. 1535. https://doi.org/10.1017/CBO9781107415324.

  • IPCC. (2019). Summary for policymakers. In P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • IPCC. (2021). Summary for policy makers. V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonney, J. Matthews, T.K. Maycock, T. Watefield, O. Yelekçi, R. Yu, B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

  • IPCC. (2022). Climate change 2022 - Mitigation of climate change, summary for policymakers. Working Group III contribution to the sixth assessment report https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf. Accessed on 4 April 2022.

  • Izdebski, A., Guzowski, P., Poniat, R., et al. (2022). Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-021-01652-4

    Article  Google Scholar 

  • Javed, T., Li, Y., Rashid, S., Li, F., Hu, Q., Feng, H., Chen, X., Ahmad, S., Liu, F., & Pulatov, B. (2021). Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Science of the Total Environment, 759, 143530. https://doi.org/10.1016/j.scitotenv.2020.143530

    Article  Google Scholar 

  • Jetz, W., McGeoch, M. A., Guralnick, R., et al. (2019). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539–551. https://doi.org/10.1038/s41559-019-0826-1

    Article  Google Scholar 

  • Jiadi, Y., Jinwei, D., Nicholas, A. S. H., Zhichao, L., Jianghao, W., Hanfa, X., & Ping, F. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514. https://doi.org/10.1016/j.jag.2021.102514

    Article  Google Scholar 

  • Jiang, S., Chen, X., Smettem, K., & Wang, T. (2021). Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China. Ecological Indicators, 121, 107193. https://doi.org/10.1016/j.ecolind.2020.107193

    Article  Google Scholar 

  • Jolly, W., Cochrane, M., Freeborn, P., et al. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 753. https://doi.org/10.1038/ncomms8537

    Article  Google Scholar 

  • Joshi, P. K., Roy, P. S., Singh, S., Agarwal, S., & Yadav, D. (2006). Vegetation cover mapping in India using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sensing of Environment, 103, 190–202.

    Article  Google Scholar 

  • Jung, M., Arnell, A., de Lamo, X., et al. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon, and water. Nature Ecology & Evolution, 5(11), 1–11. https://doi.org/10.1038/s41559-021-01528-7

    Article  Google Scholar 

  • Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V. K., Varaprasad, V., & Sarangi, C. (2020). What caused severe air pollution episode of November 2016 in New Delhi? Atmospheric Environment, 222, 117125. https://doi.org/10.1016/j.atmosenv.2019.117125

    Article  Google Scholar 

  • Kandrika, S., & Roy, P. S. (2008). Land use land cover classification of Orissa using multi-temporal IRS-P6 AWiFS data: A decision tree approach. International Journal of Applied Earth Observation and Geoinformation, 10, 186–193.

    Article  Google Scholar 

  • Kant, Y., Chauhan, P., Natwariya, A., Kannaujiya, S., & Mitra, D. (2022). Long term influence of groundwater preservation policy on stubble burning and air pollution over Northwest India. Scientific Reports, 12, 2090. https://doi.org/10.1038/s41598-022-06043-8

    Article  Google Scholar 

  • Kaul, M., Dadhwal, V. K., & Mohren, G. M. J. (2009). Land use change and net C flux in Indian forests. Forest Ecology and Management, 258(2), 100–108. https://doi.org/10.1016/j.foreco.2009.03.049

    Article  Google Scholar 

  • Kempf, M. (1993). A new way to oversee public’s forests. American Forests, 99, 28–31.

    Google Scholar 

  • Kobayashi, Y., Higa, M., Higashiyama, K., & Nakamura, F. (2020). Drivers of land-use changes in societies with decreasing populations: A comparison of the factors affecting farmland abandonment in a food production area in Japan. PLoS ONE, 15(7), e0235846. https://doi.org/10.1371/journal.pone.0235846

    Article  Google Scholar 

  • Kouki, P. (2009). Problems of relating environmental history to human settlement in the classical and late classical periods—the example of southern Jordan. In W. V. Harris (Ed.), The ancient Mediterranean environment between science and history (p. 332). Columbia University.

    Google Scholar 

  • Kriechbaum, L., Scheiber, G., & Kienberger, T. (2018). Grid-based multi-energy systems—modelling, assessment, open-source modelling frameworks and challenges. Energy, Sustainability and Society, 8, 35. https://doi.org/10.1186/s13705-018-0176-x

    Article  Google Scholar 

  • Krishna, G., Alam, M., Sahoo, R. N., & Biradar, C. (2021). Impact of climate change on crop production and its consequences on human health. In P. K. Rai, P. Singh, & V. N. Mishra (Eds.), Recent Technologies for Disaster Management and Risk Reduction. Earth and Environmental Sciences Library (p. 10.1007/978-3-030-76116–5_15). Cham: Springer.

    Google Scholar 

  • Kuckertz, A., Berger, E. S. C., & Brandle, L. (2020). Entrepreneurship and the sustainable bioeconomy transformation. Environmental Innovation and Societal Transitions, 37, 332–344. https://doi.org/10.1016/j.eist.2020.10.003

    Article  Google Scholar 

  • Kumar, S., Getirana, A., Libonati, R., Hain, C., Mahanama, S., & Andela, N. (2022). Changes in land use enhance the sensitivity of tropical ecosystems to fire climate extremes. Scientific Reports, 12, 964. https://doi.org/10.1038/s41598-022-05130-0

    Article  Google Scholar 

  • Kushwaha, S. P. S., Nandy, S., Shah, M. A., Agarwal, R., & Mukhopadhyay, S. (2018). Forest cover monitoring and prediction in a Lesser Himalayan elephant landscape. Current Science, 115(3), 510–516.

    Article  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(1), 205–241.

    Article  Google Scholar 

  • Lambin, E., Geist, H. J., & Rindfuss, R. R. (2006). Introduction: Local processes with global impacts. In E. Lambin & H. J. Geist (Eds.), Land-Use and Land-Cover Change (pp. 1–8). Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Laskar, A. H., & Bohra, A. (2021). Impact of indian summer monsoon change on ancient indian civilizations during the holocene. Frontiers in Earth Science, 9, 709455. https://doi.org/10.3389/feart.2021.709455

    Article  Google Scholar 

  • Latha, R., Murthy, B. S., & Vinayak, B. (2019). Aerosol-induced perturbation of surface fluxes over different landscapes in a tropical region. International Journal of Remote Sensing, 40(21), 8203–8221.

    Article  Google Scholar 

  • Latham, J., Cumani, R., Rosati, I., & Bloise, M. (2014). Global land cover SHARE (GLC-SHARE) database beta-release version 1.0. FAO.

    Google Scholar 

  • Le Provost, G., Badenhausser, I., Le Bagousse-Pinguet, Y., Clough, Y., Henckel, L., Violle, C., Bretagnolle, V., Roncoroni, M., Manning, P., & Gross, N. (2020). Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1573–1579. https://doi.org/10.1073/pnas.1910023117

    Article  Google Scholar 

  • Li, J., Li, G., Zhou, S., & Chen, F. (2016). Quantifying the effects of land surface change on annual runoff considering precipitation variability by SWAT. Water Resource Management, 30(3), 1071–1084. https://doi.org/10.1007/s11269-015-1211-8.

    Article  Google Scholar 

  • Li, C., Sun, G., Caldwell, P. V., Cohen, E., Fang, Y., Zhang, Y., et al. (2020). Impacts of urbanization on watershed water balances across the conterminous United States. Water Resources Research, 56, e2019WR026574. https://doi.org/10.1029/2019WR026574

    Article  Google Scholar 

  • Li, D., Wu, S., Liu, L., Zhang, Y., & Li, S. (2018). Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology., 24, 4095–4106. https://doi.org/10.1111/gcb.14327

    Article  Google Scholar 

  • Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., & Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 4(6), 810–833.

    Article  Google Scholar 

  • Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., & James, A. (2015). Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators, 58, 55–63.

    Article  Google Scholar 

  • Lineman, M., Do, Y., Kim, J. Y., & Joo, G. J. (2015). Talking about climate change and global warming. PLoS ONE, 10(9), e0138996. https://doi.org/10.1371/journal.pone.0138996

    Article  Google Scholar 

  • Liu, J. Y., Zhang, Z. X., Xu, X. L., Kuang, W. H., Zhou, W. C., Zhang, S. W., Li, R. D., Yan, C. Z., Yu, D. S., & Wu, S. X. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483–494.

    Article  Google Scholar 

  • Liu, M., & Tian, H. Q. (2010). China’s land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives. Global Biogeochemical Cycles, 24, GB3003. https://doi.org/10.1029/2009GB003687

    Article  Google Scholar 

  • Liu, L., Zhang, X., Chen, X., Gao, Y., & Mi, J. (2020). GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Version v1, Zenodo.

  • Lodh, A. (2016). Simulated impact of intensification of irrigation on indian monsoon rainfall and surface fluxes. Hydrology Current Research, 7, 233.

    Article  Google Scholar 

  • Lu, X. X., Ashmore, P., & Wang, J. F. (2003). Seasonal water discharge and sediment load changes in the upper Yangtze China. Mountain Research and Development, 23(1), 56–64.

    Article  Google Scholar 

  • Luo, M., & Lau, N. C. (2018). Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophysical Research Letters, 45(23), 13–060.

    Article  Google Scholar 

  • Ma, L., Liu, Y., Zhang, X. L., Ye, Y. X., Yin, G. F., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177.

    Article  Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience. https://doi.org/10.1038/NGEO2791

    Article  Google Scholar 

  • Mahanand, S., & Behera, M. D. (2017). Relationship between field-based plant species richness and satellite-derived biophysical proxies in the Western Ghats, India. Proceedings of the National Academy of Sciences, India Section a: Physical Sciences, 87(4), 927–939.

    Article  Google Scholar 

  • Mahmood, R., Foster, S. A., Keeling, T., Hubbard, K. G., Carlson, C., & Leeper, R. (2006). Impacts of irrigation on 20th century temperature in the northern Great Plains. Global and Planetary Change, 54(1–2), 1–18.

    Article  Google Scholar 

  • Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D., & Setegn, S. G. (2011). Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management. Hydrology and Earth System Sciences, 15, 2245–2258.

    Article  Google Scholar 

  • Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., Alves, L. M., & Soares, W. R. (2018). Changes in climate and land use over the amazon region: Current and future variability and trends. Frontiers in Earth Science. https://doi.org/10.3389/feart.2018.00228

    Article  Google Scholar 

  • Martin, D. A., Andrianisaina, F., Fulgence, T. R., et al. (2022). Land-use trajectories for sustainable land system transformations: Identifying leverage points in a global biodiversity hotspot. PNAS. https://doi.org/10.1073/pnas.2107747119

    Article  Google Scholar 

  • Matin, S., Behera, M. D., & Roy, P. S. (2017). Demonstrating surrogacy of animal diversity with plant diversity and their integration to assess inclusive biodiversity: A geoinformatics basis. Proceedings of the National Academy of Sciences, India Section a: Physical Sciences, 87(4), 911–925.

    Article  Google Scholar 

  • Meiyappan, P., Roy, P. S., Sharma, Y., Ramachandran, R. M., Joshi, P. K., De Fries, R. S., & Jain, A. K. (2017). Dynamics and determinants of land change in India: Integrating satellite data with village socioeconomics. Regional Environmental Change. https://doi.org/10.1007/s10113-016-1068-2

    Article  Google Scholar 

  • Mentaschi, L., Duveiller, G., Zulian, G., Corbane, C., Pesaresi, M., Maes, J., Stocchino, A., & Feyen, L. (2022). Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environmental Change, 72, 102441. https://doi.org/10.1016/j.gloenvcha.2021.102441

    Article  Google Scholar 

  • Meshesha, D. T., Tsunekawa, A., Tsubo, M., Ali, S. A., & Haregeweyn, N. (2014). Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. Regional Environmental Change, 14, 757–768. https://doi.org/10.1007/s10113-013-0535-2

    Article  Google Scholar 

  • Meyfroidt, P., de Bremond, A., Ryan, C. M., et al. (2022). Ten facts about land systems for sustainability. PNAS, 119(7), e2109217118. https://doi.org/10.1073/pnas.2109217118

    Article  Google Scholar 

  • Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby, S., & Dearden, R. (2014). Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. Journal of Hydrology, 515, 59–70. https://doi.org/10.1016/j.jhydrol.2014.04.011

    Article  Google Scholar 

  • Mishra, V., Ambika, A. K., Asoka, A., Aadhar, S., Buzan, J., Kumar, R., & Huber, M. (2020). Moist heat stress extremes in India enhanced by irrigation. Nature Geoscience, 13(11), 722–728.

    Article  Google Scholar 

  • Mishra, V., Asoka, A., Vatta, K., & Lall, U. (2018). Groundwater depletion and associated CO2 emissions in India. Earth’s Future, 6, 1672–1681. https://doi.org/10.1029/2018EF000939

    Article  Google Scholar 

  • Mitsuda, Y., & Ito, S. (2011). A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landscape and Ecological Engineering, 7, 117–125.

    Article  Google Scholar 

  • Moghadam, H. S., Khazaei, M., Alavipanah, S. K., & Weng, Q. (2021). Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural, and topographical factors. Giscience & Remote Sensing, 58(6), 914–928. https://doi.org/10.1080/15481603.2021.1947623

    Article  Google Scholar 

  • Molotoks, A., Smith, P., & Dawson, T. P. (2021). Impacts of land use, population, and climate change on global food security. Food Energy Security, 10, e261. https://doi.org/10.1002/fes3.261

    Article  Google Scholar 

  • Monica, A., Ortiz, A. D., Outhwaite, C. L., Dalin, C., & Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth, 4(1), 88–101. https://doi.org/10.1016/j.oneear.2020.12.008

    Article  Google Scholar 

  • Moss, P. T., & Kershaw, A. P. (2007). A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP site 820. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(1), 4–22. https://doi.org/10.1016/j.palaeo.2007.02.014

    Article  Google Scholar 

  • Müller, D., & Zeller, M. (2004). Agricultural intensification, population growth and forest cover change: Evidence from spatially explicit land use modeling in the central highlands of Vietnam (pp. 495–519). Springer.

    Google Scholar 

  • Murthy, B. S., Latha, R., Kumar, M., & Mahanti, N. C. (2014). Effect of aerosols on evapo-transpiration. Atmospheric Environment, 89, 109–118.

    Article  Google Scholar 

  • Mustard, J., & Fisher, T., et al. (2004). Land Use and Hydrology. In G. Gutman (Ed.), Land change science: observing monitoring and understanding trajectories of change on the earth’s surface (pp. 257–276). Kluwer Academic Publishers.

    Google Scholar 

  • Niyogi, D., Chang, H. I., Saxena, V. K., Holt, T., Alapaty, K., Booker, F., Chen, F., Davis, K. J., Holben, B., Matsui, T., & Meyers, T. (2004). Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31(20).

  • Niyogi, D., Kishtawal, C., Tripathi, S. & Govindaraju, R. S., (2010). Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resources Research, 46(3).

  • Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 4, 25–51.

    Article  Google Scholar 

  • NRSA (National Remote Sensing Agency). (1985). Forest Cover Assessment of India Using Satellite Remote Sensing Data during 1972–1975 and 1980–1982 Periods; Tech. Rep.

  • NRSC. (2004). Manual of National Land Use/Land Cover on 1:250000 scale using multitemporal IRS P6 AWiFS data. NRSC Technical Report, Hyderabad, India.

  • NRSC. (2006). Manual national land use land cover mapping using multi-temporal satellite data. NRSA/RSGIS-A/NRC/NLULC-L3/ TECHMAN/R02/May-06. https://doi.org/10.13140/RG.2.2.24691.55842.

  • NRSC. (2008). Technical report on national land use and land cover (LULC) Mapping using Multi-temporal AWiFS Data. NRSC Report number: NRSC/RS&GIS/JAN’09/TR-30.

  • NRSC, 2019, Wasteland Atlas of India: Change analysis based on Temporal satellite data 2008–09 and 2015–16. Prepared for Department of Land Resources, Ministry of Rural Development, Government of India. Pp. 1–25.

  • Obahoundje, S., Ofosu, E. A., Akpoti, K., & Kabo-bah, A. T. (2017). Land use and land cover changes under climate uncertainty: modelling the impacts on hydropower production in Western Africa. Hydrology, 4(1), 2. https://doi.org/10.3390/hydrology4010002

    Article  Google Scholar 

  • Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769–779.

    Article  Google Scholar 

  • Oliphant, A. J., Thenkabail, P. S., Teluguntla, P., et al. (2017). Nasa making earth system data records for use in research environments (Measures) Global food security-support analysis data (Gfsad) cropland extent 2015 Southeast Asia 30 m V001.

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wires Climate Change, 5, 317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Op de Hipt, F., Diekkrüger, B., Steup, G., Yira, Y., Hoffmann, T., Rode, M., & Näschen, K. (2019). Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN. Science of the Total Environment, 653, 431–445.

    Article  Google Scholar 

  • Pachauri, R. K., Gupta, S., & Mehra, M. (1992). A reappraisal of WRI’s estimates of greenhouse gas emissions. Natural Resources Forum, 16(1), 33–38.

    Article  Google Scholar 

  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Dor, E. B. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957–988. https://doi.org/10.1080/10106049.2019.1629647

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42. https://doi.org/10.1038/nature01286

    Article  Google Scholar 

  • Patidar, N., Das, P., Tripathi, P., & Behera, M. D. (2022). Covariation between lulc change and hydrological balance in river basin scale. In: A. Pandey, V. M. Chowdary, M. D. Behera & V. P. Singh (Eds.) Geospatial technologies for land and water resources management (Vol. 103). Water Science and Technology Library. Cham: Springer. https://doi.org/10.1007/978-3-030-90479-1_17

  • Paul, S., Ghosh, S., Mathew, M., Devanand, A., Karmakar, S., & Niyogi, D. (2018). Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  • Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., & Ramsankaran, R. A. A. J. (2016). Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  • Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56, 1–10. https://doi.org/10.1016/j.gloenvcha.2019.03.002

    Article  Google Scholar 

  • Phan, D. C., Trung, T. H., Truong, V. T., et al. (2021). First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Scientific Reports, 11, 9979. https://doi.org/10.1038/s41598-021-89034-5

    Article  Google Scholar 

  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12, 2291. https://doi.org/10.3390/rs12142291

    Article  Google Scholar 

  • Piao, S., Friedlingstein, P., Ciais, P., et al. (2007). Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS, 104(39), 15242–15247.

    Article  Google Scholar 

  • Pilaš, I., Medved, I., Medak, J., & Medak, D. (2014). Response strategies of the main forest types to climatic anomalies across Croatian biogeographic regions inferred from FAPAR remote sensing data. Forest Ecology and Management, 326, 58–78.

    Article  Google Scholar 

  • Planning Commission Government of India. (2014). Annual report 2013–14. Government of India Planning Commission, New Delhi.

  • Planque, C., Lucas, R., Punalekar, S., Chognard, S., Hurford, C., Owers, C., Horton, C., Guest, P., King, S., Williams, S., & Bunting, P. (2021). National crop mapping using sentinel-1 time series: A Knowledge-based descriptive algorithm. Remote Sensing, 13, 846. https://doi.org/10.3390/rs13050846

    Article  Google Scholar 

  • Prijith, S. S., Srinivasarao, K., Lima, C. B., Gharai, B., Rao, P. V. N., SeshaSai, M. V. R., & Ramana, M. V. (2021). Effects of land use/land cover alterations on regional meteorology over Northwest India. Science of the Total Environment, 765, 142678.

    Article  Google Scholar 

  • Qazi, N. (2020). Hydrological functioning of forested catchments, Central Himalayan Region India. Forest Ecosystems, 7(63), 1–18. https://doi.org/10.1186/s40663-020-00275-8

    Article  Google Scholar 

  • Qian, Y., Chakraborty, T. C., Li, J., Li, D., He, C., Sarangi, C., Chen, F., Yang, X., & Leung, L. R. (2022). urbanization impact on regional climate and extreme weather: Current Understanding, uncertainties, and future research directions. Advances in Atmospheric Sciences, 1–42.

  • Qin, R., & Liu, T. (2022). A review of landcover classification with very-high resolution remotely sensed optical images—analysis unit model scalability and transferability. Remote Sensing, 14, 646. https://doi.org/10.3390/rs140306461.1

    Article  Google Scholar 

  • Qiu, H., Hu, B., & Zhang, Z. (2021). Impacts of land use change on ecosystem service value based on SDGs report–Taking Guangxi as an example. Ecological Indicators, 133(108366), 1–14. https://doi.org/10.1016/j.ecolind.2021.108366

    Article  Google Scholar 

  • Quéré, C. L., et al. (2018). Global carbon budget 2017. Earth System Science Data, 10, 405–448.

    Article  Google Scholar 

  • Ravan, S. A., & Roy, P. S. (1997). Satellite remote sensing for ecological analysis of forested landscape. Plant Ecology, 131, 129–141. https://doi.org/10.1023/A:1009731608350.

    Article  Google Scholar 

  • Ravindranath, N. H., Somashekhar, B. S., & Gadgil, M. (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297–320. https://doi.org/10.1023/A:1005303405404

    Article  Google Scholar 

  • Ravindranath, N. H., & Sukumar, R. (1998). Climate change and tropical forests in India. Climatic Change, 39, 563–581. https://doi.org/10.1023/a:1005394505216

    Article  Google Scholar 

  • Reddy, C. S., Jha, C. S., & Dadhwal, V. K. (2016). Assessment and monitoring of long-term forest cover changes (1920–2013) in Western Ghats biodiversity hotspot. Journal of Earth System Science, 125, 103–114.

    Article  Google Scholar 

  • Redman, C. L. (1999). Human impact on ancient environments (p. 288). University of Arizona Press.

    Google Scholar 

  • Reshma, M. R., Roy, P. S., Chakravarthi, V., Joshi, P. K., & Sanjay, J. (2020). Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: A simulation study. Environmental Monitoring and Assessment., 192, 86. https://doi.org/10.1007/s10661-019-8044-5

    Article  Google Scholar 

  • Reshma, M. R., Roy, P. S., Chakravarthi, V., Sanjay, J., & Joshi, P. K. (2018). Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators, 85, 21–36.

    Article  Google Scholar 

  • Reyer, C. P., Brouwers, N., Rammig, A., et al. (2015). Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. Journal of Ecology, 103, 5–15.

    Article  Google Scholar 

  • Richards, J. F. (1984). Documenting environmental history: global patterns of land conversion. Environment: Science and Policy for Sustainable Development, 26(9), 6–38. https://doi.org/10.1080/00139157.1984.9932528

    Article  Google Scholar 

  • Roy, P. S., Kushwaha, S. P. S., Murthy, M. S. R., Roy, A., Kushwaha, D., Reddy, C. S., Behera, M. D., Mathur, V. B., Padalia, H., Saran, S. et al. (2012). Biodiversity characterization at landscape level: National assessment 2012. Indian Institute of Remote Sensing. Dehradun, India. p. 140.

  • Roy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite remote sensing: sensors, applications and techniques. Proceedings of the National Academy of Sciences, India Section a: Physical Sciences, 87, 465–472. https://doi.org/10.1007/s40010-017-0428-8

    Article  Google Scholar 

  • Roy, P. S., Joshi, P. K., Singh, S., Agarwal, S., Yadav, D., & Jegannathan, C. (2006). Biome mapping in India using vegetation type map derived using temporal satellite data and environmental parameters. Ecological Modelling, 197, 148–158.

    Article  Google Scholar 

  • Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K., et al. (2015). Development of decadal (1985–1995-2005) land use and land cover database for India. Remote Sensing, 7(3), 2401–2430. https://doi.org/10.3390/rs70302401

    Article  Google Scholar 

  • Roy, P. S., & Tomar, S. (2000). Biodiversity Characterization at landscape level using Geospatial Modelling Technique. Biological Conservation., 95(1), 95–109.

    Article  Google Scholar 

  • Sahin, V., & Hall, M. J. (1996). The effects of afforestation and deforestation on water yields. Journal of Hydrology, 178, 293–309.

    Article  Google Scholar 

  • Sankaran, M., Ratnam, J., & Hanan, N. P. (2004). Tree–grass coexistence in savannas revisited–insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters, 7, 480–490.

    Article  Google Scholar 

  • Santanello, J. A., Jr., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B., Berg, A., Ek, M., Gentine, P., Guillod, B. P., Van Heerwaarden, C., & Roundy, J. (2018). Land–atmosphere interactions: The LoCo perspective. Bulletin of the American Meteorological Society, 99(6), 1253–1272.

    Article  Google Scholar 

  • Sarangi, C., Chakraborty, T., Tripathi, S., Krishnan, M., Morrison, R., Evans, J., & Mercado, L. (2022). Observations of aerosol-vapor pressure deficit-evaporative fraction coupling over India. Atmospheric Chemistry and Physics Discussions, 22, 1–19.

    Google Scholar 

  • Sarangi, C., Qian, Y., Li, J., Ruby Leung, L., Chakraborty, T. C., & Liu, Y. (2021). Urbanization amplifies nighttime heat stress on warmer days over the US. Geophysical Research Letters, 48, e2021GL095678.

    Article  Google Scholar 

  • Sarangi, C., Tripathi, S. N., Mishra, A. K., Goel, A., & Welton, E. J. (2016). Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period. Journal of Geophysical Research: Atmospheres, 121(13), 7936–7957.

    Article  Google Scholar 

  • Sarangi, C., Tripathi, S. N., Qian, Y., Kumar, S., & Ruby Leung, L. (2018). Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic Basin from observations and cloud resolving model simulations. Journal of Geophysical Research: Atmospheres, 123(7), 3645–3667.

    Article  Google Scholar 

  • Saranya, K. R. L., Sudhakar Reddy, C., & Prasada Rao, P. V. V. (2016). Long-term changes in forest cover and land use of Similipal Biosphere Reserve of India using satellite remote sensing data. Remote Sensing Applications: Society and Environment, 4(10), 61–67. https://doi.org/10.1016/j.rsase.2016.06.001.

    Article  Google Scholar 

  • Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 43, W03437. https://doi.org/10.1029/2006WR005486

    Article  Google Scholar 

  • Scheffer, M., et al. (2012). Anticipating critical transitions. Science, 338, 344–348. https://doi.org/10.1126/science.1225244

    Article  Google Scholar 

  • Scheidel, A., & Sorman, A. H. (2012). Energy transitions and the global land rush: Ultimate drivers and persistent consequences. Global Environmental Change, 22(3), 588–595. https://doi.org/10.1016/j.gloenvcha.2011.12.005

    Article  Google Scholar 

  • Scholes, R., & Archer, S. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517–544.

    Article  Google Scholar 

  • Secades, C., O'Connor, B., Brown, C., & Walpole, M. (2014). Earth observation for biodiversity monitoring: A review of current approaches and future opportunities for tracking progress towards the Aichi Biodiversity Targets. Secretariat of the convention on biological diversity, Montréal, Canada. Technical Series No. 72, p. 183.

  • Seki, H. A., Shirima, D. D., Courtney Mustaphi, C. J., Marchant, R., & Munishi, P. K. T. (2017). The impact of land use and land cover change on biodiversity within and adjacent to Kibasira Swamp in Kilombero Valley Tanzania. African Journal of Ecology. https://doi.org/10.1111/aje.12488

    Article  Google Scholar 

  • Sexton, J. O., Feng, M., Channan, S., et al. (2016). Earth science data records of global forest cover and change. User Guide, 1–39.

  • Shailesh, N. (1994). Application of remote sensing in studying mangrove ecosystems. In: S. Deshmukh & V. Balaji (Eds.) Conservation of Mangrove Genetic Resources—A Training Manual, Madras: M. S. Swaminathan Research Foundation, India; Yokohama: International Tropical Timber Organisation, Japan. pp. 203–220.

  • Shailesh, N., & Kumar, T. S. (2009). The first Tsunami early warning centre in the Indian Ocean. In Risk Wise, 175– 177. UK: Tudor Rose.

  • Shailesh, N., Shekhar, S., Ramesh, R., Baba, M., Shah, H., & Senthilvel, A. (2015). Report of the Committee to Review the Issues Relating to the Coastal Regulation Zone Notification 2011. http://www.moef.gov.in.

  • Shailesh, N. (2017). Coastal zone management in India − present status and future needs. Geo-Spatial Information Science, 20(2), 174–183.

    Article  Google Scholar 

  • Shao, J. A., Wei, C. F., & Xie, D. T. (2006). An insight on drivers of land use change at regional scale. Chinese Geographical Science, 16, 176–182. https://doi.org/10.1007/s11769-006-0014-5

    Article  Google Scholar 

  • Sharma, U. C. (2020). Methane and nitrous oxide emissions from livestock in India: Impact of land use change. Journal of Agriculture and Aquaculture, 2(1).

  • Sharma, N., Behera, M. D., Das, A. P., & Panda, R. M. (2019). Plant richness pattern in an elevation gradient in the Eastern Himalaya. Biodiversity and Conservation, 28(8–9), 2085–2104.

    Article  Google Scholar 

  • Sharma, P., & Rai, S. C. (2007). Carbon sequestration with land-use cover change in a Himalayan watershed. Geoderma, 139(3), 371–378. https://doi.org/10.1016/j.geoderma.2007.02.016

    Article  Google Scholar 

  • Shastri, H., & Ghosh, S. (2019). Urbanisation and surface urban heat island intensity (SUHII). In Climate change signals and response, Springer, pp. 73–90.

  • Shastri, H., Barik, B., Ghosh, S., Venkataraman, C., & Sadavarte, P. (2017). Flip flop of day-night and summer-winter surface urban heat Island intensity in India. Scientific Reports, 7(1), 40178. https://doi.org/10.1038/srep40178

    Article  Google Scholar 

  • Shastri, H., Paul, S., Ghosh, S., & Karmakar, S. (2015). Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres, 120(2), 496–516.

    Article  Google Scholar 

  • Shirish, A. R., & Roy, P. S. (1997). Satellite remote sensing for ecological analysis of forested landscape. Plant Ecology, 131(2), 129–141. https://doi.org/10.1023/A:1009731608350

    Article  Google Scholar 

  • Singh, R. (2021). Re-envisioning remote sensing applications: perspectives from developing countries (1st ed.). CRC Press. https://doi.org/10.1201/9781003049210

    Book  Google Scholar 

  • Skidmore, A. K., Coops, N. C., Neinavaz, E., Ali, A., et al. (2021). Priority list of biodiversity metrics to observe from space. Nature Ecology & Evolution, 5, 896–906. https://doi.org/10.1038/s41559-021-01451-x

    Article  Google Scholar 

  • Skole, D., & Tucker, C. (1993). Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science, 260, 1905–1909.

    Article  Google Scholar 

  • Srivastava, S., Singh, T. P., Singh, H., Kushwaha, S. P. S., & Roy, P. S. (2002). Assessment of large-scale deforestation in Sonitpur district of Assam. Current science, 1479–1484.

  • Staal, A., Van Nes, E. H., Hantson, S., et al. (2018). Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Global Change Biology, 24, 5096–5109. https://doi.org/10.1111/gcb.14408

    Article  Google Scholar 

  • Subramaniam, V., Kuntom, A., Zainal, H., Loh, S. K., Aziz, A. A., & Parveen, G. K. A. (2019). Analysis of the uncertainties of the inclusion of indirect land use change into the European Union renewable energy sources directive. Journal of Oil Palm Research, 31(3), 480–488.

    Google Scholar 

  • Sudhakar, S., & Kameshwara R. S.V.C. (2010). Land use and land cover analysis. Chapter in book (2nd Edition) Remote Sensing Application. P.S. Roy, R.S. Dwivedi & D. Vijayan (Eds.). Published by NRSC, ISRO, Hyderabad. ISBN: 978–81–909460–0–1. 21–48.

  • Sultana, S., & Satyanarayana, A. N. V. (2019). Impact of urbanisation on urban heat island intensity during summer and winter over Indian metropolitan cities. Environmental Monitoring and Assessment, 191(3), 1–17.

    Google Scholar 

  • Tang, C., Uriarte, M., Jin, H., Morton, D. C., & Zheng, T. (2021). Large-scale, image-based tree species mapping in a tropical forest using artificial perceptual learning. Methods in Ecology and Evolution, 12, 608–618. https://doi.org/10.1111/2041-210X.13549

    Article  Google Scholar 

  • Tattersall, I. (2009). Becoming modern Homo sapiens. Evolution: Education and Outreach, 2(4), 584–589. https://doi.org/10.1007/s12052-009-0164-x

    Article  Google Scholar 

  • Taylor, S. (2014). Climate vulnerability in Asia’s high mountains. Published by WWF-US Aid. pp. 116.

  • Taylor, C. A., & Rising, J. (2021). Tipping point dynamics in global land use. Environmental Research Letters, 16, 125012. https://doi.org/10.1088/1748-9326/ac3c6d

    Article  Google Scholar 

  • Theeuwes, N. E., Barlow, J. F., Teuling, A. J., Grimmond, C. S. B., & Kotthaus, S. (2019). Persistent cloud cover over mega-cities linked to surface heat release. Npj Climate and Atmospheric Science, 2(1), 1–6.

    Article  Google Scholar 

  • Thenkabail, P. (2012). Global croplands and their water use for food security in the twenty-first century. Photogrammetric Engineering and Remote Sensing, 78, 797–798.

    Google Scholar 

  • Tian, H., Banger, K., Bo, T., & Dadhwal, V. K. (2014). History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change, 121, 78–88. https://doi.org/10.1016/j.gloplacha.2014.07.005

    Article  Google Scholar 

  • Tripathi, P., Behera, M. D., & Roy, P. S. (2019). Spatial heterogeneity of climate explains plant richness distribution at the regional scale of India. PLoS ONE. https://doi.org/10.1371/journal.pone.0218322

    Article  Google Scholar 

  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 16, 306–314.

    Article  Google Scholar 

  • Ulpiani, G. (2021). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of the Total Environment, 751, 141727. https://doi.org/10.1016/j.scitotenv.2020.141727

    Article  Google Scholar 

  • UNISDR (United Nations International Strategy for Disaster Reduction). (2015). Sendai framework for disaster risk reduction 2015–2030. UNISDR.

    Google Scholar 

  • United Nations Publication (2021) Resilience in a Riskier World, ISSN: 2411–8176 ST/ESCAP/2963.

  • van de Ven, D. J., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific Reports, 11, 2907. https://doi.org/10.1038/s41598-021-82042-5

    Article  Google Scholar 

  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano, A. F., Jr. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. https://doi.org/10.5194/acp-6-3423-2006

    Article  Google Scholar 

  • Venter, O., Sanderson, E., Magrach, A., et al. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, 12558. https://doi.org/10.1038/ncomms12558

    Article  Google Scholar 

  • Verbesselt, J., Umlauf, N., Hirota, M., et al. (2016). Remotely sensed resilience of tropical forests. Nature Climate Change, 6, 1028.

    Article  Google Scholar 

  • Verburg, P. H., & Chen, Y. (2000). Multiscale characterization of land-use patterns in China. Ecosystems, 3, 369–385.

    Article  Google Scholar 

  • Verde, N., Kokkoris, I. P., Georgiadis, C., Kaimaris, D., Dimopoulos, P., Mitsopoulos, I., & Mallinis, G. (2020). National scale land cover classification for ecosystem services mapping and assessment, using multitemporal Copernicus EO data and google earth engine. Remote Sensing, 12, 3303. https://doi.org/10.3390/rs12203303

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenko, J., & Mellilo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277, 494–499.

    Article  Google Scholar 

  • Wagner, P. D., Kumar, S., & Schneider, K. (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 17, 2233–2246. https://doi.org/10.5194/hess-17-2233-2013

    Article  Google Scholar 

  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability a transformability in social-ecological systems. Ecology and Society, 9(2), 1–10.

  • Walker, B. H., & Langridge, J. L. (1997). Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plants available nutrients (PAN): A case study from Australia. Journal of Biogeography, 24, 813–825.

    Article  Google Scholar 

  • Walsh, S. J., Evans, T. P., Welsh, W. F., Entwisle, B., & Rindfuss, R. R. (1999). Scale-dependent relationships between population and environment in Northeastern Thailand. Photogrammetric Engineering and Remote Sensing, 65, 97.

    Google Scholar 

  • Walter, H., & Mueller-Dombois, D. (1971). Ecology of tropical and subtropical vegetation. Oliver & Boyd Edinburgh.

    Google Scholar 

  • Wang, K., Dickinson, R. E., & Liang, S. (2008). Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration. Geophysical Research Letters, 35(10), L10401. https://doi.org/10.1029/2008GL034167.

    Article  Google Scholar 

  • Wang, J., Yu, F., Ma, G., Peng, F., Zhou, X., Wu, C., Yang, W., Wang, C., Cao, D., Jiang, H., Jing, H., Qu, S., & Xu, M. (2021). Gross economic-ecological product as an integrated measure for ecological service and economic products. Resources, Conservation and Recycling, 171, 105566. https://doi.org/10.1016/j.resconrec.2021.105566

    Article  Google Scholar 

  • Wiegand, K., Saltz, D., & Ward, D. (2006). A patch-dynamics approach to savanna dynamics and woody plant encroachment–insights from an arid savanna. Perspectives in Plant Ecology, Evolution and Systematics, 7, 229–242.

    Article  Google Scholar 

  • Wilk, J., Andersson, L., & Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in northeast Thailand. Hydrological Processes, 15, 2729–2748.

    Article  Google Scholar 

  • Wilk, J., & Hughes, D. A. (2002). Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrological Sciences Journal, 47(1), 19–30.

    Article  Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M., et al. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12, 2501. https://doi.org/10.1038/s41467-021-22702-2

    Article  Google Scholar 

  • World Bank (2017). https://blogs.worldbank.org/opendata/chart-globally-70-freshwater-used-agriculture (Accessed on 20 March 2022).

  • Wu, J., & Loucks, O. L. (1995). From balance-of-nature to hierarchical patch dynamics: A paradigm shift in ecology. Quarterly Review of Biology, 70, 439–466.

    Article  Google Scholar 

  • Wubie, M. A., Assen, M., & Nicolau, M. D. (2016). Patterns, causes and consequences of land use/cover dynamics in the Gumara watershed of Lake Tana basin North-Western Ethiopia. Environmental Systems Research, 5, 8. https://doi.org/10.1186/s40068-016-0058-1

    Article  Google Scholar 

  • Wulder, M. A., Hall, R. J., Coops, N. C., & Franklin, S. E. (2004). High spatial resolution remotely sensed data for ecosystem characterization. BioScience, 54(6), 511–521.

    Article  Google Scholar 

  • Xu, S., & Ehlers, M. (2022). Automatic detection of urban vacant land: An open-source approach for sustainable cities. Computers, Environment and Urban Systems, 91, 101729. https://doi.org/10.1016/j.compenvurbsys.2021.101729

    Article  Google Scholar 

  • Xue, H., Feingold, G., & Stevens, B. (2008). Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. Journal of the Atmospheric Sciences, 65(2), 392–406.

    Article  Google Scholar 

  • Xue, P., Malanotte-Rizzoli, P., Wei, J., & Eltahir, E. A. B. (2020). Coupled ocean-atmosphere modeling over the maritime continent: A review. Journal of Geophysical Research Oceans, 125, e2019JC014978. https://doi.org/10.1029/2019JC014978

    Article  Google Scholar 

  • Yang, B., Yang, X., Leung, L. R., Zhong, S., Qian, Y., Zhao, C., Chen, F., Zhang, Y., & Qi, J. (2019). Modeling the impacts of urbanization on summer thermal comfort: The role of urban land use and anthropogenic heat. Journal of Geophysical Research: Atmospheres, 124(13), 6681–6697.

    Article  Google Scholar 

  • Yasuda, Y., Kitagawa, H., & Nakagawa, T. (2000). The earliest record of major anthropogenic deforestation in the Ghab Valley, Northwest Syria: A palynological study. Quaternary International, 73(74), 127–136.

    Article  Google Scholar 

  • Yu, L., Wang, J., Clinton, N., et al. (2013). From-Gc: 30 m global cropland extent derived through multisource data integration. International Journal of Digital Earth, 6(6), 521–533.

    Article  Google Scholar 

  • Yu, M., Tang, G., Yang, Y., Li, Q., Wang, Y., Miao, S., Zhang, Y., & Wang, Y. (2020). The interaction between urbanization and aerosols during a typical winter haze event in Beijing. Atmospheric Chemistry and Physics, 20(16), 9855–9870.

    Article  Google Scholar 

  • Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011

    Article  Google Scholar 

  • Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., & Mi, J. (2020a). Glc_Fcs30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data Discussions, 13, 1–31.

    Google Scholar 

  • Zhang, X., Liu, L., Wu, C., et al. (2020b). Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data, 12(3), 1625–1648.

    Article  Google Scholar 

  • Zhao, D. S., Wu, S. H., Yin, Y., & Yin, Z. Y. (2011). Vegetation distribution on Tibetan Plateau under climate change scenario. Regional Environmental Change, 11, 905–915.

    Article  Google Scholar 

  • Zhao, R., Chen, Y., Shi, P., et al. (2013). Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang China. Environmental Earth Sciences, 68(2), 591–604.

    Article  Google Scholar 

  • Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X. Q., & Liu, D. (2017). Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics, 17(8), 5439–5457.

    Article  Google Scholar 

  • Zhou, G., Wei, X., Chen, X., et al. (2014). Global pattern for the effect of climate and land cover on water yield. Nature Communications, 6, 5918. https://doi.org/10.1038/ncomms6918

    Article  Google Scholar 

  • Zhu, P., & Burney, J. (2022). Untangling irrigation effects on maize water and heat stress alleviation using satellite data. Hydrology and Earth System Sciences, 26(3), 827–840.

    Article  Google Scholar 

  • Zipper, S. C., Keune, J., & Kollet, S. J. (2019). Land use change impacts on European heat and drought: Remote land-atmosphere feedbacks mitigated locally by shallow groundwater. IOP Publishing, Environmental Research Letters, 14(4), 044012. https://doi.org/10.1088/1748-9326/ab0db3

    Article  Google Scholar 

  • Zvoleff, A., Wandersee, S., An, L., & López-Carr, D. (2017). Land use and cover change. Oxford Bibliographies. https://doi.org/10.1093/OBO/9780199874002-0105

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Editor-in-Chief for his invitation to contribute a review article on the topic for the Journal of Indian Society of Remote Sensing. Authors are also thankful to the Director NRSC-ISRO for providing recent Land use and Land cover map of India. The review required consultation of the vast literature of the global research community, our research experiences and critical review of the subject.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectually to the manuscript. PSR conceived and framed the manuscript. PSR, RMR, OP, PKT, SR, MDB, CS and VPK drafted the initial manuscript. PSR and RR developed the figures and tables. All authors edited the manuscript.

Corresponding author

Correspondence to Parth Sarathi Roy.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2516 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.S., Ramachandran, R.M., Paul, O. et al. Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. J Indian Soc Remote Sens 50, 1615–1640 (2022). https://doi.org/10.1007/s12524-022-01569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01569-w

Keywords

Navigation