Skip to main content

Advertisement

Log in

Understanding Diurnality and Inter-Seasonality of a Sub-tropical Urban Heat Island

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We quantify the spatial and temporal aspects of the urban heat-island (UHI) effect for Kanpur, a major city in the humid sub-tropical monsoon climate of the Gangetic basin. Fixed station measurements are used to investigate the diurnality and inter-seasonality in the urban–rural differences in surface temperature (\({\Delta } T_\mathrm{s}\)) and air temperature (\({\Delta } T_\mathrm{c}\)) separately. The extent of the spatial variations of the nighttime \({\Delta } T_\mathrm{c}\) and \({\Delta } T_\mathrm{s}\) is investigated through mobile campaigns and satellite remote sensing respectively. Nighttime \({\Delta } T_\mathrm{c}\) values dominate during both the pre-monsoon (maximum of 3.6 \(^\circ \hbox {C}\)) and the monsoon (maximum of 2.0 \(^\circ \hbox {C}\)). However, the diurnality in \({\Delta } T_\mathrm{s}\) is different, with higher daytime values during the pre-monsoon, but very little diurnality during the monsoon. The nighttime \({\Delta } T_\mathrm{s}\) value is mainly associated with differences in the urban–rural incoming longwave radiative flux (\(r^{2}=0.33\) during the pre-monsoon; 0.65 during the monsoon), which, in turn, causes a difference in the outgoing longwave radiative flux. This difference may modulate the nighttime \({\Delta } T_\mathrm{c}\) value as suggested by significant correlations (\(r^{2}=0.68\) for the pre-monsoon; 0.50 for the monsoon). The magnitude of \({\Delta } T_\mathrm{c}\) may also be modulated by advection, as it is inversely related with the urban wind speed. A combination of in situ, remotely sensed, and model simulation data were used to show that the inter-seasonality in \({\Delta } T_\mathrm{s}\), and, to a lesser extent, in \({\Delta } T_\mathrm{c}\), may be related to the change in the land use of the rural site between the pre-monsoon and the monsoon periods. Results suggest that the degree of coupling of \({\Delta } T_\mathrm{s}\) and \({\Delta } T_\mathrm{c}\) may be a strong function of land use and land cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aida M, Yaji M (1979) Observations of atmospheric downward radiation in the Tokyo area. Boundary-Layer Meteorol 16(3):453–465

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Ayanlade A (2016) Seasonality in the daytime and night-time intensity of land surface temperature in a tropical city area. Sci Total Environ 557:415–424

    Article  Google Scholar 

  • Behera SN, Sharma M, Dikshit O, Shukla S (2011) Development of GIS-aided emission inventory of air pollutants for an urban environment. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  • Borbora J, Das AK (2014) Summertime urban heat island study for Guwahati city, India. Sustain Cities Soc 11:61–66

    Article  Google Scholar 

  • Bornstein RD (1968) Observations of the urban heat island effect in New York city. J Appl Meteorol 7(4):575–582

    Article  Google Scholar 

  • Carrico CM, Bergin MH, Xu J, Baumann K, Maring H (2003) Urban aerosol radiative properties: measurements during the 1999 Atlanta supersite experiment. J Geophys Res Atmos (1984–2012) 108(D7):8422

    Article  Google Scholar 

  • Chang CH, Goh KC (1999) The relationship between height to width ratios and the heat island intensity at 22:00 h for Singapore. Int J Climatol 19(9):1011–1023

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Chen F, Janjić Z, Mitchell K (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale eta model. Boundary-Layer Meteorol 85(3):391–421

    Article  Google Scholar 

  • Chow WT, Roth M (2006) Temporal dynamics of the urban heat island of Singapore. Int J Climatol 26(15):2243–2260

    Article  Google Scholar 

  • Dyras I, Ustrnul Z (2007) The spatial analysis of the selected meteorological fields in the example of Poland. Spatial interpolation for climate data: the use of GIS in climatology and meteorology, 87–96

  • Erell E, Williamson T (2007) Intra-urban differences in canopy layer air temperature at a mid-latitude city. Int J Climatol 27(9):1243–1255

    Article  Google Scholar 

  • Garratt JR (1993) Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—a review. J Clim 6(3):419–448

    Article  Google Scholar 

  • Garratt JR (1995) Observed screen (air) and gcm surface/screen temperatures: implications for outgoing longwave fluxes at the surface. J Clim 8(5):1360–1368

    Article  Google Scholar 

  • Goldreich Y (1992) Urban climate studies in Johannesburg, a sub-tropical city located on a ridge—a review. Atmos Environ Part B Urban Atmos 26(3):407–420

    Article  Google Scholar 

  • Goward SN (1981) Thermal behavior of urban landscapes and the urban heat island. Phys Geogr 2(1):19–33

    Google Scholar 

  • Grimmond CSB, Oke TR (1991) An evapotranspiration-interception model for urban areas. Water Resour Res 27(7):1739–1755

    Article  Google Scholar 

  • Hogan AW, Ferrick MG (1998) Observations in nonurban heat islands. J Appl Meteorol 37(2):232–236

    Article  Google Scholar 

  • Howard L (1833) The climate of London: deduced from meteorological observations made in the metropolis and at various places around it, vol 2. Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter

  • Huang L, Li J, Zhao D, Zhu J (2008) A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Build Environ 43(1):7–17

    Article  Google Scholar 

  • Huete A, Justice C, Van Leeuwen W (1999) Modis vegetation index (mod13). Algorithm Theor Basis Doc 3:213

    Google Scholar 

  • Indian Meteorological Department (2015) Ever recorded maximum and minimum temperatures up to 2010. http://www.imdpune.gov.in/Temp_Extremes/histext2010.pdf. Accessed 2 May 2015

  • Jiménez C, Prigent C, Mueller B, Seneviratne S, McCabe M, Wood E, Rossow W, Balsamo G, Betts A, Dirmeyer P et al (2011) Global intercomparison of 12 land surface heat flux estimates. J Geophys Res Atmos 116(D2)

  • Jin M, Dickinson RE (2010) Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ Res Lett 5(4):044,004

    Article  Google Scholar 

  • Jin M, Shepherd JM (2005) Inclusion of urban landscape in a climate model: How can satellite data help? Bull Am Meteorol Soc 86(5):681–689

    Article  Google Scholar 

  • Jin M, Dickinson R, Vogelmann A (1997) A comparison of CCM2-bats skin temperature and surface-air temperature with satellite and surface observations. J Clim 10(7):1505–1524

    Article  Google Scholar 

  • Jin MS (2012) Developing an index to measure urban heat island effect using satellite land skin temperature and land cover observations. J Clim 25(18):6193–6201

    Article  Google Scholar 

  • Johnson D (1985) Urban modification of diurnal temperature cycles in Birmingham, UK. Int J Climatol 5(2):221–225

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M (1988) Time schemes for strongly nonlinear damping equations. Mon Weather Rev 116(10):1945–1958

    Article  Google Scholar 

  • Kim YH, Baik JJ (2005) Spatial and temporal structure of the urban heat island in Seoul. J Appl Meteorol 44(5):591–605

    Article  Google Scholar 

  • Klysik K, Fortuniak K (1999) Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos Environ 33:3885–3895

    Article  Google Scholar 

  • Kolokotroni M, Giridharan R (2008) Urban heat island intensity in London: an investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol Energy 82(11):986–998

    Article  Google Scholar 

  • Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker J (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res Atmos (1984–2012) 104(D16):19,569–19,585

    Article  Google Scholar 

  • Mahrt L, Ek M (1984) The influence of atmospheric stability on potential evaporation. J Clim Appl Meteorol 23:222

    Article  Google Scholar 

  • Mahrt L, Pan H (1984) A two-layer model of soil hydrology. Boundary-Layer Meteorol 29(1):1–20

    Article  Google Scholar 

  • Mitchell K (2001) The community Noah land-surface model (LSM). User’s Guide, Public Release Version 2(7):1

  • Mohan M, Kikegawa Y, Gurjar B, Bhati S, Kolli NR (2013) Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theor Appl Climatol 112(3–4):647–658

    Article  Google Scholar 

  • Morris C, Simmonds I, Plummer N (2001) Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J Appl Meteorol 40(2):169–182

    Article  Google Scholar 

  • Mueller B, Seneviratne S, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher J, Guo Z et al (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38(6):L06402

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oke TR (2006) Towards better scientific communication in urban climate. Theor Appl Climatol 84(1–3):179–190

    Article  Google Scholar 

  • Pan HL, Mahrt L (1987) Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorol 38(1–2):185–202

    Article  Google Scholar 

  • Pandey AK, Singh S, Berwal S, Kumar D, Pandey P, Prakash A, Lodhi N, Maithani S, Jain VK, Kumar K (2014) Spatio-temporal variations of urban heat island over Delhi. Urban Clim 10:119–133

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Breon FM, Nan H, Zhou L, Myneni RB (2011) Surface urban heat island across 419 global big cities. Environ Sci Technol 46(2):696–703

    Article  Google Scholar 

  • Phillips DL, Dolph J, Marks D (1992) A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric For Meteorol 58(1):119–141

    Article  Google Scholar 

  • Rodell M, Houser P, Uea Jambor, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rui H (2011) Readme document for global land data assimilation system version 1 (gldas-1). Products at http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas

  • Schaake JC, Koren VI, Duan QY, Mitchell K, Chen F (1996) Simple water balance model for estimating runoff at different spatial and temporal scales. J Geophys Res D Atmos 101:7461–7475

    Article  Google Scholar 

  • Sellers P, Rasool S, Bolle H (1990) A review of satellite data algorithms for studies of the land surface. Bull Am Meteorol Soc 71(10):1429–1447

    Article  Google Scholar 

  • Singh R, Dey S, Tripathi S, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos (1984–2012) 109(D23)

  • Sodoudi S, Shahmohamadi P, Vollack K, Cubasch U, Che-Ani A (2014) Mitigating the urban heat island effect in megacity Tehran. Adv Meteorol

  • Steinecke K (1999) Urban climatological studies in the Reykjavık subarctic environment, Iceland. Atmos Environ 33(24):4157–4162

    Article  Google Scholar 

  • Suckling PW (1981) Nocturnal observations of incoming longwave radiation and the urban heat island for a small Prairie city. Arch Meteorol Geophys Bioklim Ser B 29(1–2):23–27

    Article  Google Scholar 

  • Szymanowski M, Kryza M et al (2009) GIS-based techniques for urban heat island spatialization. Clim Res 38(2):171

    Article  Google Scholar 

  • Tereshchenko I, Filonov A (2001) Air temperature fluctuations in Guadalajara, Mexico, from 1926 to 1994 in relation to urban growth. Int J Climatol 21(4):483–494

    Article  Google Scholar 

  • Tso C (1996) A survey of urban heat island studies in two tropical cities. Atmos Environ 30(3):507–519

    Article  Google Scholar 

  • Unger J, Sümeghy Z, Zoboki J (2001) Temperature cross-section features in an urban area. Atmos Res 58(2):117–127

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs Population Division (2014) World urbanization prospects: The 2014 revision, UN

  • United Nations Statistics Division (2013) Demographic yearbook. http://unstats.un.org/unsd/demographic/products/dyb/dybsets/2013.pdf. Accessed 2 May 2015

  • Velazquez-Lozada A, Gonzalez JE, Winter A (2006) Urban heat island effect analysis for San Juan, Puerto Rico. Atmos Environ 40(9):1731–1741

    Article  Google Scholar 

  • Wan Z (1999) Modis land-surface temperature algorithm theoretical basis document (lst atbd). Institute for Computational Earth System Science, Santa Barbara

    Google Scholar 

  • Wang L, Gao Z, Miao S, Guo X, Sun T, Liu M, Li D (2015) Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing. Adv Atmos Sci 32(4):505–514

    Article  Google Scholar 

  • Zhao G, Siebert S (2015) Season-wise irrigated and rainfed crop areas for india around year 2005. doi:10.13019/M2CC71. https://mygeohub.org/publications/11

  • Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511(7508):216–219

    Article  Google Scholar 

  • Zhou Y, Savijärvi H (2014) The effect of aerosols on long wave radiation and global warming. Atmos Res 135:102–111

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by the Department of Science and Technology, Government of India. The authors also gratefully acknowledge the financial support given by The Earth System Science Organization, Ministry of Earth Sciences, Government of India to conduct this research. The authors thank Pravin Verma and Harishankar for proper maintenance of the weather stations and for helping to organize the measurement campaigns. The authors also thank Prof. Vimal Mishra, Indian Institute of Technology, Gandhinagar, for his comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachchida Nand Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Sarangi, C. & Tripathi, S.N. Understanding Diurnality and Inter-Seasonality of a Sub-tropical Urban Heat Island. Boundary-Layer Meteorol 163, 287–309 (2017). https://doi.org/10.1007/s10546-016-0223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0223-0

Keywords

Navigation