Skip to main content

Advertisement

Log in

Estimation of Forest Crown Density Using Pleiades Satellite Data and Nonparametric Classification Method

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The Zagros forests in western Iran are a crucial source of environmental services, but are severely threatened by climatic and anthropological constraints. One crucial forest parameter is the amount of canopy coverage which enables an indirect assessment of aboveground biomass and, in turn, the carbon emission and sequestration. The aim of this study is estimation of forest crown density using Pleiades satellite data and three non-parametric classification include random forest (RF), boosted regression tree (BRT) and classification and regression tree (CART) in Kaka Reza of Lorestan province, western Iran. For this purpose, we then ensured the accuracy of geometric images, creating the necessary processing such as vegetation indices, principal component analysis and texture analysis was performed on the original bands using a random—systematic sampling design, 96 sample plots were taken. Results showed that RF compared to the two other algorithms with overall accuracy of 75% and kappa coefficient of 0.73 could better classify the forest crown density, while the CART method had the lowest accuracy with overall accuracy of 71% and kappa coefficient of 0.68. Also results showed BRT had overall accuracy of 71% and kappa coefficient of 0.68. Overall results showed Pleiades satellite data and non-parametric classification method had high capability for separation crown density in Zagros region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadi, S. (2003). Potentiality of ASTER images for forest density mapping in Zagros (Case study: Marivan forests). Msc Thesis in forestry, Faculty Natural Resource, University, Tehran, 87 pp.

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  • Bell, G. E., Howell, B. M., Johnson, G. V., Raun, W. R., Solie, J. B. & Stone, M. L. (2004). Optical sensing of Turfgrass chlorophyll content and tissue Nitrogen. HORTSXIENCE, 39(5), 1130–1132.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 15–32.

    Google Scholar 

  • Breiman, L., & Cutler, A. (2003). Setting up, using, and understanding Random Forests v4.0. http://www.stat.berkeley.edu/users/breiman/rf.html.

  • Breiman, L., Friedman, J. H., Olsen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, California, USA: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Carreiras, J. M. B., Pereira, J. M. C., & Pereira, J. S. (2006). Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecology and Management, 223, 45–53.

    Article  Google Scholar 

  • Cheng, W., Zhang, X., Wang, K., & Dai, X. (2009). Integrating classification and regression tree (CART) with GIS for assessment of heavy metals pollution. Environmental Monitoring and Assessment, 158, 419–431.

    Article  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Karen, J., Beard, H., Cutler, A., Hess, K. T., et al. (2007). Random forests for classification in Ecology. Ecology, 88(11), 2783–2792.

    Article  Google Scholar 

  • Dietterich, T. (2000a). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40, 139–157.

    Article  Google Scholar 

  • Dietterich, T. (2000b). Ensemble methods in machine learning. Lecture Notes Computer Science, 1857, 1–15.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., & Anderson, R. P. (2006). Novel methods improve prediction of species ‘distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.

    Article  Google Scholar 

  • FAO. (2002). Forests and the forestry sector. www.fao.org/forestry/site/23747/en/iran. Accessed 21 Dec 2009.

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Machine learning. Proceedings of the thirteenth international conference (pp. 148–156).

  • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337–407.

    Article  Google Scholar 

  • Gleyzes, M. A., Perret, L., & Kubik, P. (2012). Pléiades system architecture and main performances. In International archives of the photogrammetry, remote sensing and spatial information sciences (22nd ISPRS Congress), vol. 39-B1, ISPRS, 24 August3 September 2012, Melbourne, Australia (pp. 537–542).

  • Gong, P., Miller, J. R., & Spanner, M. (1994). Forest canopy closure from classification and spectral un mixing of scene components—Multi sensor evaluation of an open canopy. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1067–1080.

    Article  Google Scholar 

  • Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D., & Hastie, T. (2008). Dispersal, disturbance, and the contrasting biogeographies of New Zealand’s diadromous and no diadromous fish species. Journal of Biogeography, 35, 1481–1497.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25, 2365−2407.

    Article  Google Scholar 

  • Majani, A. (2002). Investigating IRS-1C-PAN data potential to produce forest maps in Northwestern Guilan. M.Sc. dissertation, Faculty of Natural Resources, University of Tehran, Iran.

  • Moradi, A., Oladi, J., Fallah, A., & Fatehi, P. (2010). An evaluation of the capability of IRS-P6 data for monitoring pollarding forest areas of Northern Zagros (Case Study: Kurdistan, Pollarded Forests of Baneh). Journal of Agricultural Science and Technology, 12, 299–308.

    Google Scholar 

  • Naghavi, H., Fallah, A., Shataee, S., Latifi, H., Soosani, J., Ramezani, H., et al. (2014). Canopy cover estimation across semi-Mediterranean woodlands: application of high-resolution earth observation data. Journal of Applied Remote Sensing, 8, 083524-1–083524-23.

    Article  Google Scholar 

  • Prasad, M. A., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.

    Article  Google Scholar 

  • Prasad, P. R. C., Nagabhatla, N., Reddy, C. S., Gupta, S., Rajan, K. S., Raza, S. H., et al. (2010). Assessing forest canopy closure in a geospatial medium to address management concerns for tropical islands-Southeast Asia. Environmental Monitoring and Assessment, 160, 541–553.

    Article  Google Scholar 

  • Richards, J. A. (1993). Remote sensing digital image analysis: An introduction. Berlin: Springer.

    Book  Google Scholar 

  • Roujean, J. L., & Breon, F. M. (1995). Estimating RAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In Third earth resources technology satellite-1 symposium (pp. 309–317).

  • Schapire, R. (2003). The boosting approach to machine learning—An overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002 (Eds. D.D).

  • Selle, B., Lischeid, G., & Huwe, B. (2007). Effective modeling of percolation at the landscape scale using data based approaches. Computers & Geosciences, 34, 699–713.

    Article  Google Scholar 

  • Soh, L. K., & Satsoulis, C. (1999). Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transaction on Geosciences and Remote Sensing, 37(2), 780–795.

    Article  Google Scholar 

  • Solberg, A. H. S. (1999). Contextual data fusion applied to forest map revision. IEEE Transaction on Geosciences and Remote Sensing, 37(3), 1234–1243.

    Article  Google Scholar 

  • Tian-Shyug, L., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50, 1113–1130.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Walton, J. T. (2008). Sub pixel urban land cover estimation: comparing cubist, random forests, and support vector regression. Photogrammetric Engineering & Remote Sensing, 74(10), 1213–1222.

    Article  Google Scholar 

  • Watts, J. D., & Lawrence, R. L. (2008). Merging Random Forest classification with an object- oriented approach for analysis of agricultural lands. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing 2008, XXXVII(B7), 579–582.

    Google Scholar 

  • Wu, W. (2011). Derivation of tree canopy cover by multi scale remote sensing approach. In ISPRS workshop on geospatial data infrastructure: From data acquisition and updating to smarter services, Guilin-China.

  • Wulder, M. A., Hall, O. J., Coops, N. C., & Franklin, S. (2004). High spatial resolution remotely sensed data for ecosystem characterization. BioScience, 54(6), 511–521.

    Article  Google Scholar 

  • Xu, B., Gong, P., & Pu, R. (2003). Crown closure estimation oak savannah in a dry season with landsat tm imagery: Comparison of various indices through correlation analysis. International Journal of Remote Sensing, 24, 1811–1822.

    Article  Google Scholar 

  • Yu, X., Hyypp, J., Vastaranta, M., Holopainen, M., & Viitala, R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 28–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Kalbi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalbi, S., Hassanvand, M.N., Soosani, J. et al. Estimation of Forest Crown Density Using Pleiades Satellite Data and Nonparametric Classification Method. J Indian Soc Remote Sens 46, 1151–1158 (2018). https://doi.org/10.1007/s12524-018-0771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0771-5

Keywords

Navigation