Skip to main content

Advertisement

Log in

Assessing forest canopy closure in a geospatial medium to address management concerns for tropical islands—Southeast Asia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study outlines an approach to classify forest density and to estimate canopy closure of the forest of the Andaman and Nicobar archipelago. The vector layers generated for the study area using satellite data was validated with the field knowledge of the surveyed ground control points. The methodology adopted in this present analysis is three-tiered. First, the density stratification into five zones using visual interpretation for the complete archipelago. In the second step, we identified two island groups from the Andaman to investigate and compare the forest strata density. The third and final step involved more of a localised phytosociological module that focused on the North Andaman Islands. The results based on the analysis of the high-resolution satellite data show that more than 75% of the mangroves are under high- to very high-density canopy class. The framework developed would serve as a significant measure to forest health and evaluate management concerns whilst addressing issues such as gap identification, conservation prioritisation and disaster management—principally to the post-tsunami assessment and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alwyn, H. G., & Calaway, D. (1987). Contribution of non trees to species richness of a tropical rain forest. Biotropica, 19(2), 149–156. doi:10.2307/2388737.

    Article  Google Scholar 

  • Anderson, K. L., & Leopold, D. J. (2002). The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York State. The Journal of the Torrey Botanical Society, 129, 238–250. doi:10.2307/3088774.

    Article  Google Scholar 

  • Anonymous (2003). Biodiversity characterization at landscape level in Andaman and Nicobar Islands using remote sensing and geographic information system. Dehra Dun: Indian Institute of Remote Sensing.

    Google Scholar 

  • Barik, S. K., Pandey, H. N., Tripathi, R. S., & Rao, P. (1992). Micro environmental variability and species diversity in tree fall gaps in a sub-tropical broadleaved forest. Vegetatio, 103, 31–40.

    Google Scholar 

  • Bhuyan, P., Khan, M. L., & Tripathi, R. S. (2003). Tree diversity and population structure in undisturbed and human-impacted stands of tropical wet evergreen forest in Arunachal Pradesh, Eastern Himalayas, India. Biodiversity and Conservation, 12(8), 1753–1773. doi:10.1023/A:1023619017786.

    Article  Google Scholar 

  • Blair, R. M., & Brunett, L. E. (1976). Phytosociological changes after timber harvest in the southern in a southern pine ecosystem. Ecology, 57, 18–32. doi:10.2307/1936395.

    Article  Google Scholar 

  • Blodgett, C., Jakubauskas, M., Price, K., & Martinko, E. (2000). Remote sensing-based geostatistical modeling of forest canopy structure. ASPRS 2000 Annual Conference, Washington, DC, May 22–26.

  • Chauhan, N. (2004). Mapping, monitoring and modeling of landscape for biodiversity characterization in Baratang Forest Division, Andaman and Nicobar Islands. PhD thesis, University of Pune and Indian Institute of Remote Sensing (Department of Space, Government of India), India.

  • Chavez, P. S., Sides, S. C., Jr, & Anderson, J. A. (1991). Comparison of three different methods to merge multi-resolution and multi-sectoral data: Landsat TM and SPOT Panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3), 295–303.

    Google Scholar 

  • Davidar, P., Jean Philippe, P., & Egbert, G. L., Jr. (2005). Changes in rain forest tree diversity, dominance and rarity across a seasonality gradient in the Western Ghats, India. Journal of Biogeography, 32(3), 493–501. doi:10.1111/j.1365-2699.2005.01165.x.

    Article  Google Scholar 

  • Denslow, J. S. (1995). Disturbance and diversity in tropical rain forests: The density effect. Ecological Applications, 5, 962–968. doi:10.2307/2269347.

    Article  Google Scholar 

  • Denslow, J. S., Ellison, A. M., & Sanford, R. E. (1998). Tree fall gap size effects on above- and below-ground processes in a tropical wet forest. Journal of Ecology, 86, 597–609. doi:10.1046/j.1365-2745.1998.00295.x.

    Article  Google Scholar 

  • Dutt, C. B. S. Udaya lakshmi, V., & Sadhasivaiah, A. S. (1994). Role of remote sensing in forest management. GIS Development. Retrieved 12 February 2008 from http://www.gisdevelopment.net/aars/acrs/1994/ts5/ts5002.asp.

  • Grubb, P. J. (1977). The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society, 52, 107–145. doi:10.1111/j.1469-185X.1977.tb01347.x.

    Article  Google Scholar 

  • Harding, D., Lefsky, M. A., Parker, G. G., & Blair, B. (2001). Laser altimetry canopy height profiles: Methods and validation for closed-canopy, broadleaved forests. Remote Sensing of Environment, 76, 283–297. doi:10.1016/S0034-4257(00)00210-8.

    Article  Google Scholar 

  • Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science, 283, 554–557. doi:10.1126/science.283.5401.554.

    Article  CAS  Google Scholar 

  • Jacobs, M. (1988). The tropical rainforests: A first encounter. Berlin: Springer, 295 pp.

    Google Scholar 

  • Karen, A. R., Barry, J. F., & Fox, M. D. (2002). Changes to plant species richness in forest fragments: Fragment age, disturbance and fire history may be as important as area. Journal of Biogeography, 29(5–6), 749–765. doi:10.1046/j.1365-2699.2002.00722.x.

    Google Scholar 

  • Katul, G. G., & Albertson, J. D. (1998). An investigation of higher order closure models for a forested canopy. Boundary-Layer Meteorology, 89, 47–74. doi:10.1023/A:1001509106381.

    Article  Google Scholar 

  • Köhler P., & Huth, A. (2007). Impacts of recruitment limitation and canopy disturbance on tropical tree species richness. Ecological Modelling, 203(3–4), 511–517. doi:10.1016/j.ecolmodel.2006.11.023.

    Article  Google Scholar 

  • Marshall, B. J., Wood, C. J., Gardiner, B. A., & Belcher, R. E. (2002). Conditional sampling of forest canopy gusts. Boundary-Layer Meteorology, 102, 225–251. doi:10.1023/A:1013181714844.

    Article  Google Scholar 

  • Muukkonen, P., & Heiskanen, J. (2005). Estimating biomass for boreal forests using ASTER satellite data combined with stand wise forest inventory data. Remote Sensing of Environment, 99, 434–447. doi:10.1016/j.rse.2005.09.011.

    Article  Google Scholar 

  • Nagabhatla, N., & Roy, P. S. (2007). Measuring landscape parameters: Fragmentation, disturbance and biological richness in Baratang Islands (Andaman) for estimating landscape structure, human and environment interlinkages. International Journal of Ecological Development, 6(S07), 22–36. http://www.ceser.res.in/isder/ijed/cont/ijed-s07-abs.html.

    Google Scholar 

  • Nagabhatla, N., Roy, P. S., & Jagdale, R. (2006). Evaluating the change (1968–2001) in landscape pattern and analyzing disturbance in Baratang Forest Division (Andaman Islands), Southeast Asia, GIS Development. http://www.gisdevelopment.net/application/nrm/overview/over003_1.html. Accessed 20th August 2008.

  • Prasad, R. C. (2006). Phytodiversity assessment of tropical rainforest of North Andaman Islands using remote sensing and GIS. PhD thesis, Osmania University, and National Remote Sensing Agency (Department of Space, Government of India), India.

  • Prasad, R. C., Reddy, C. S., & Dutt, C. B. S. (2007a). Phytodiversity assessment of tropical rainforest of North Andaman Islands, India. Research Journal of Forestry, 1(1), 27–39.

    Article  Google Scholar 

  • Prasad, R. C., Reddy, C. S., Rajasekhar, G., & Dutt, C. B. S. (2007b). Mapping and analyzing vegetation types of North Andaman Islands, India. GIS development. Retrieved 15 January 2008 from http://www.gisdevelopment.net/application/nrm/overview/over004_1.htm.

  • Prasad, R. C., Reddy, C. S., Rajan, K. S., Raza, S. H., & Dutt, C. B. S. (2009). Assessment of tsunami and anthropogenic impacts on the forest of the North Andaman Islands. India International Journal of Remote Sensing (in press). doi:10.1080/01431160802460070.

  • Rauf, A. (2004). The effect of introduced herbivores on vegetation in the Andaman Islands. Current Science, 86(8), 1103–1112.

    Google Scholar 

  • Ricklefs, R. E. (1979). Environmental heterogeneity and plant species diversity: A hypothesis. American Naturalist, 111, 376–381. doi:10.1086/283169.

    Google Scholar 

  • Rikimaru, A., & Miyatake, S. (1997). Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. GIS Development Retrieved 25 February 2008 from http://www.gisdevelopment.net/aars/acrs/1997/ts5/index.shtm.

  • Rikimaru, A., Roy, P. S., & Miyatake, S. (2002). Tropical forest cover density mapping 2002. Tropical Ecology, 43(1), 39–47.

    Google Scholar 

  • Rokhmatuloh, T. R., Wikantika, K., Munadi, K., & Aslam, M. (2003). Study on the spectral quality preservation derived from multisensor image fusion techniques between JERS-1 SAR and Landsat TM data. Geoscience and Remote Sensing Symposium, IGARSS 03 Proceedings IEEE International, 6(21–25), 3656–3658.

    Google Scholar 

  • Roy, P. S., Diwakar, P. G., Vohra, T. P. S., & Shan, S. K. (1990). Forest resource management using Indian remote sensing satellite data. Asian-Pacific Remote Sensing Journal, 3, 11–22.

    Google Scholar 

  • Roy, P. S., Diwakar, P. G., Singh, I. J., & Bhan, S. K. (1994). Evaluation of microwave remote sensing data for forest stratification and canopy characterisation. Journal of Indian Society of Remote Sensing (Photonirvachak), 22(1), 31–44.

    Article  Google Scholar 

  • Roy, P. S., Miyatake, S., & Rikimaru, A. (1996). Biophysical spectral response modelling approach for forest density stratification. GIS Development. Retrieved 25 February 2008 from http://www.gisdevelopment.net/aars/acrs/1996/ts5/index.shtml.

  • Roy, P. S., Padalia, H., Chauhan, N., Porwal, M. C., Biswas, S., & Jagdale, R. (2005). Validation of geospatial model for biodiversity characterization at landscape level—A study in Andaman & Nicobar Islands, India. Ecological Modelling, 185(2–4), 349–369. doi:10.1016/j.ecolmodel.2005.01.001.

    Article  Google Scholar 

  • Runkle, J. R. (1982). Patterns of disturbance in some old-growth forests of Eastern North America. Ecology, 63, 1544–1546. doi:10.2307/1938878.

    Article  Google Scholar 

  • Shannon, C. E., & Weiner, W. (1963). The mathematical theory of communication. Urbana, USA: University of Illinois Press.

    Google Scholar 

  • Singh, I. J., Das, K. K., & Kushwaha, S. P. S. (2003). Forest stock assessment using IRS LISS III and PAN merged data in Timil Forest Range, Dehradun. Journal Indian society of Remote Sensing, 31(1), 49–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rama Chandra Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, P.R.C., Nagabhatla, N., Reddy, C.S. et al. Assessing forest canopy closure in a geospatial medium to address management concerns for tropical islands—Southeast Asia. Environ Monit Assess 160, 541–553 (2010). https://doi.org/10.1007/s10661-008-0717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0717-4

Keywords

Navigation