Skip to main content

Advertisement

Log in

Inconsistencies of SEBS Model Output Based on the Model Inputs: Global Sensitivity Contemplations

  • Short Note
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Assessment of evapotranspiration is always a foremost element in water resources management. The consistent assessment of daily evapotranspiration provisions help decision makers to review the existing land use practices in terms of water management, while empowering them to recommend accurate land use changes. Earth observation satellite sensors are used in conjunction with Surface Energy Balance (SEB) models to overcome difficulties in obtaining daily evapotranspiration quantities on a regional scale. SEB System (SEBS) is used to estimate daily evapotranspiration and evaporative fraction over the Nile Delta along with Remote Sensing data acquired by different sensors and data from 15 in-situ meteorological stations. The consequential maps and the following correlation analysis show agreement, signifying SEBS’ applicability and accurateness in the estimation of daily evapotranspiration over agricultural areas. Sensitivity analysis evaluates the influences of the inputs to the total uncertainty in the analysis outcomes. SEBS inputs parameters are interconnected. Interconnections between different biophysical parameters are anticipated, but the magnitude of the features sensitivity is uncertain. Four different biophysical parameters are involved to provide a comparative analysis of Gaussian process emulators for performing a global sensitivity analysis (GSA). Conclusions conducted from the current work are anticipated to contribute decisively towards an inclusive SEBS inputs parameter assessment of its overall verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afify, A. A., Arafat, S. M., & Aboel Ghar, M. N. (2011). Delineating rice belt cultivation in the Nile pro-delta of Vertisols using remote sensing data of Egypt Sat-1. Journal of Agricultural Research, 35(6), 2263–2279.

    Google Scholar 

  • Allan, R. P. (2011). Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorological Applications, 18, 324–333.

    Article  Google Scholar 

  • Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): Model ASCE. Journal of Irrigation and Drainage Engineering, 133(4), 380–394.

    Article  Google Scholar 

  • Boegh, E., Soegaard, H., & Thomsen, A. (2002). Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance. Remote Sensing of Environment, 79, 329–343.

    Article  Google Scholar 

  • Chowdary, V. M., Srivastava, Y. K., Chandran, V., & Jeyaram, A. (2009). Integrated water resource development plan for sustainable management of Mayurakshi watershed, India using remote sensing and GIS. Water Resources Management, 23, 1581–1602.

    Article  Google Scholar 

  • Elhag, M. (2014a). Remotely sensed vegetation indices and spatial decision support system for better water consumption Regime in the Nile Delta. A case study for rice cultivation suitability map. Life Science Journal, 11(1), 201–209.

    Google Scholar 

  • Elhag, M. (2014b). Sensitivity analysis assessment of remotely based vegetation indices to improve water resources management. Environment, Development and Sustainability. doi:10.1007/s10668-014-9522-0.

    Google Scholar 

  • Elhag, M., Psilovikos, A., Manakos, I., & Perakis, K. (2011). Application of SEBS model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over Nile Delta. Water Resources Management, 25(11), 2731–2742.

    Article  Google Scholar 

  • Elhag, M., Psilovikos, A., & Sakellariou, M. (2013). Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques. Environment, Development and Sustainability, 15, 1189–1204.

    Article  Google Scholar 

  • Frey, C., Parlow, E., Vogt, R., Harhash, M., & Abel Wahab., M. (2010). Flux measurements in Cairo. Part 1: in situ measurements and their applicability for comparison with satellite data. International Journal of Climatology, Online early view.

  • Giardino, C., Bresciani, M., Villa, P., & Martinelli, A. (2010). Application of remote sensing in water resource management: the case study of Lake Trasimeno, Italy. Water Resources Management, 24, 3885–3899.

    Article  Google Scholar 

  • Holvoet, K., van Griensven, A., Seuntjents, P., & Vanrolleghem, P. A. (2005). Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, 30, 518–526.

    Article  Google Scholar 

  • Jacob, F., Olioso, A., Gu, X., Su, Z., & Seguin, B. (2002). Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model. Agronomie, 22, 669–680.

    Article  Google Scholar 

  • Jin, X., Wan, L., & Su, Z. (2005). Research on evaporation of Taiyuan basin area by using remote sensing. Hydrology and Earth System Sciences Discussions, 2, 209–227.

    Article  Google Scholar 

  • Kalma, J., & Jupp, D. (1990). Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model. Agricultural and Forest Meteorology, 51, 223–246.

    Article  Google Scholar 

  • Kustas, W., & Norman, J. (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41(4), 495–516.

    Article  Google Scholar 

  • Lagouarde, J., Jacob, F., Gu, X., Olioso, A., Bonnefond, J., Kerr, Y., McAneney, K., & Irvine, M. (2002). Spatialization of sensible heat flux over a heterogeneous landscape. Agronomie, 22, 627–633.

    Article  Google Scholar 

  • Li, F., Kustas, W., Preuger, J., Neale, C., & Jackson, T. (2005). Utility of remote sensing-based two-source balance model under low- and high-vegetation cover conditions. Journal of Hydrometeorology, 6, 878–891.

    Article  Google Scholar 

  • Li, Z., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., & Zhang, X. (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 3801–3853.

  • Menenti, M. (1984). Physical aspects and determination of evaporation in deserts applying remote sensing techniques Report 10 (Special issue) (pp. 202–203). The Netherlands: Institute for Land and Water Management Research (ICW).

    Google Scholar 

  • Moran, M., Clarke, T., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49, 246–263.

    Article  Google Scholar 

  • Muthuwatta, L. P., Ahmad, M. D., Bos, M. G., & Rientjes, T. H. M. (2010). Assessment of water availability and consumption in the Karkheh River Basin, Iran- using remote sensing and geo-statistics. Water Resources Management, 24, 459–484.

    Article  Google Scholar 

  • Olioso, A., Chauki, H., Courault, D., & Wigneron, J. (1999). Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sensing of Environment, 68, 341–356.

    Article  Google Scholar 

  • Petropoulos, G., Wooster, M. J., Carlson, T. N., Kennedy, M. C., & Scholze, M. (2009). A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation. Ecological Modelling, 220(2009), 2427–2440.

    Article  Google Scholar 

  • Psilovikos, A., & Elhag, M. (2013). Forecasting of remotely sensed daily evapotranspiration data over Nile Delta Region, Egypt. Water Resources Management, 27(12), 4115–4130.

    Article  Google Scholar 

  • Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3), 549–590.

    Article  Google Scholar 

  • Saltelli, A., Tarantola, S., & Chan, K. P. S. (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1), 39–56.

    Article  Google Scholar 

  • Saltelli, A., Chan, K., & Scott, E. M. (2000). Sensitivity analysis. In Wiley series in probability and statistics (pp. 467). Chichester: Wiley. ISBN:0-471-99892-3.

  • Saltelli, A., Tarantola, S., Campologno, F., & Ratto, M. (2004). Sensitivity analysis in practice: A guide to assessing scientific models (p. 217). UK: Wiley. ISBN:0-470-87093-1.

    Google Scholar 

  • Schwieger, V. (2004). Variance-based sensitivity analysis for model evaluation in engineering surveys. In INGEO 2004 and FIG regional central and eastern European conference on engineering surveying Bratislava, Slovakia, November 11–13, 2004.

  • Sellers, P., Randall, D., Collatz, J., Berry, J., Field, C., Dazlich, D., Zhang, C., Collelo, G., & Bounous, A. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs: Model formulation. Journal of Climate, 9, 676–705.

    Article  Google Scholar 

  • Su, Z. (2001). A surface energy balance system (SEBS) for estimation of turbulent heat fluxes from point to continental scale. In: Z. Su & C. Jacobs (Eds.), Advanced earth observation land surface climate. Publications of the National Remote Sensing Board (BCRS), USP-2, 01–02, 184–185.

  • Su, Z. (2002). The surface energy balance system SEBS for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–99.

    Article  Google Scholar 

  • Su, Z., Pelgrum, M., & Menenti, M. (1999). Aggregation effects of surface heterogeneity in land surface processes. Hydrology and Earth System Sciences, 3(4), 549–563.

    Article  Google Scholar 

  • Su, Z., Schmugge, T., Kustas, P., & Massman, J. (2001). An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. Journal of Applied Meteorology, 40(11), 1933–1951.

    Article  Google Scholar 

  • Su, Z., Yacob, A., Wen, J., Roerink, G., He, Y., Gao, B., Boogaard, H., & Diepen, C. (2003). Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Physics and Chemistry of the Earth, 28, 89–101.

    Article  Google Scholar 

  • Su, W., Charlock, T. P., & Rose, F. G. (2005). Deriving surface ultraviolet radiation from CERES surface and atmospheric radiation budget: methodology. Journal of Geophysical Research, 110, D14209.

    Google Scholar 

  • Su, W., Bodas-Salcedo, A., Xu, K.-M., & Charlock, T. P. (2010). Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Energy System (CERES) data. Journal of Geophysical Research, 115, D01105.

    Google Scholar 

  • Wu, C. D., Lo, H. C., Cheng, C. C., & Chen, Y. K. (2010). Application of SEBAL and Markov models for future stream flow simulation through remote sensing. Water Resources Management, 24, 3773–3797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elhag.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhag, M. Inconsistencies of SEBS Model Output Based on the Model Inputs: Global Sensitivity Contemplations. J Indian Soc Remote Sens 44, 435–442 (2016). https://doi.org/10.1007/s12524-015-0502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0502-0

Keywords

Navigation