Skip to main content

Advertisement

Log in

Assessing Performance of Tomo-SAR and Backscattering Coefficient for Hemi-Boreal Forest Aboveground Biomass Estimation

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Tomo-SAR technique has been used for hemi-boreal forest height and further forest biomass estimation through allometric equation. Backscattering coefficient especially in longer wavelength (L- or P-band) is thought as a useful parameter for hemi-boreal forest biomass retrieval. The aim of this paper is to assess the performance of vertical backscattering power and backscattering coefficient for hemi-boreal forest aboveground biomass (AGB) estimation with airborne P-band data. The test site locates in southern Sweden called Remningstorp test site, and the in-situ forest AGB ranges from 14 t/ha to 245 t/ha at stand level. Multi-baseline P-band Pol-InSAR data in repeat-path mode collected during March and May in 2007 at Remningstorp test site was used. We found that the correlation coefficient (R) between backscattering coefficient of P-band HH polarization and the in-situ forest biomass reached 0.87. The R for P-band VV backscattering power at 5 m is 0.71 and 10 m is 0.72. Backscattering coefficient in HH polarization and vertical backscattering power at 5 m and 10 m were applied to construct a model for hemi-boreal forest AGB estimation by backward step-wise regression and cross-validation approach. The results showed that the estimated forest AGB ranges from 19 to 240 t/ha, and the constructed model obtained a higher R and smaller RMSE, the value of R is 0.91, RMSE is 30.43 t/ha at Remningstorp test site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boyd, D. D., Foody, G. M., & Curran, P. J. (1999). The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelenghts [J]. International Journal of Remote Sensing, 20, 1017–1023.

    Article  Google Scholar 

  • Cloude, S. R. (2006). Polarization coherence tomography [J]. Radio Science, 41(4).

  • Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry [J]. Geoscience and Remote Sensing, IEEE Transactions on, 36(5), 1551–1565.

    Article  Google Scholar 

  • Dinh, H. T. M., Rocca, F., Tebaldini, S., d’Alessandro,M.M., & Le Toan, T. (2012). Linear and circular polarization P band SAR tomography for tropical forest biomass study [C]. In EUSAR, 2012, 489–492.

  • Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., & Hughes, M. K. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks [J]. Remote Sensing of Environment, 84(3), 393–410.

    Article  Google Scholar 

  • Ferro-Famil, L., Neumann, M., & Huang, Y.. (2009). Multi-baseline POL-inSAR statistical techniques for the characterization of distributed media[C]. In Geoscience and Remote Sensing Symposium, 2009 I.E. International, IGARSS 2009, 3: III-971-III-974.

  • Fornaro, G., Serafino, F., & Soldovieri, F. (2003). Three-dimensional focusing with multipass SAR data [J]. Geoscience and Remote Sensing, IEEE Transactions on, 41(3), 507–517.

    Article  Google Scholar 

  • Houghton, R. A., Hall, F., & Goetz, S. J. (2009). Importance of biomass in the global carbon cycle [J]. Journal of Geophysical Research: Biogeosciences, 2005–2012, 114(G2).

  • Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. [J]. Geoscience and Remote Sensing, IEEE Transactions on, 30(2), 403–411.

    Article  Google Scholar 

  • Le Toan, T., Quegan, S., Davidson, M. W. J., et al. (2011). The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle [J]. Remote Sensing of Environment, 115(11), 2850–2860.

    Article  Google Scholar 

  • Lefsky, M. A. (2010). A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system [J]. Geophysical Research Letters, 37(15).

  • Li, W., Chen, E., Li, Z., Ke, Y., & Zhan, W. (2015). Forest aboveground biomass estimation using polarization coherence tomography and PolSAR Segmentation [J]. International Journal of Remote Sensing, 36(2), 530–550.

    Article  Google Scholar 

  • Lombardini, F., Montanari, M. & Gini, F. (2003). Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources [J]. Signal Processing, IEEE Transactions on, 51 (6): 1508–1519

  • Neumann, M., Saatchi, S. S., Ulander, L. M. H., & Fransson, J. E. S. (2012). Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass [J]. Geoscience and Remote Sensing, IEEE Transactions on, 50(3), 714–726.

    Article  Google Scholar 

  • O’Brien, R. M. (2007). A Caution regarding Rules of Thumb for Variance Inflation Factors [J]. Quality and Quantity, 41(5), 673–690.

    Article  Google Scholar 

  • Reigber, A., & Moreira, A. (2000). First demonstration of airborne SAR tomography using multibaseline L-band data [J]. Geoscience and Remote Sensing, IEEE Transactions on 38(5): 2142–2152.

  • Sandberg, G., Ulander, L. M. H., Fransson, J. E. S., Holmgren, J., & Le Toan, T. (2011). L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest [J]. Remote Sensing of Environment, 115(2011), 2874–2886.

    Article  Google Scholar 

  • Soenen, S. A., Peddle, D. R., Hall, R. J., et al. (2010). Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain [J]. Remote Sensing of Environment, 114, 1325–1337.

    Article  Google Scholar 

  • Solverg, S., Astrup, R., Gobakken, T., et al. (2010). Estimating spruce and pine biomass with interferometric X-band SAR [J]. Remote Sensing of Environment, 114, 2353–2360.

    Article  Google Scholar 

  • Tebaldini, S., & Rocca, F. (2012). Multibaseline polarimetric SAR tomography of a boreal forest at P-and L-bands [J]. Geoscience and Remote Sensing, IEEE Transactions on, 50(1), 232–246.

    Article  Google Scholar 

  • Ulander, L.M.H., Flood, B., Gustavsson, A., Dubois-Fernandez, P., Dupuis X., Fransson, J.E.S., Holmgren, J., Wallerman, J., Eriksson, L.E.B., & Soja, M.J. (2011). BioSAR 2010 Data Acquisition Report Issue 1.0 [R]. European Space Agency, ESTEC contract no. 4000102285/10/NL/JA, 2011.

  • Ulander, L.M.H., Gustavsson, A., Flood, B., et al. (2010). BIOSAR 2010 Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2010 Experiment; Final Report; Available online: http://earth.esa.int/campaigns/DOC/BioSAR_2010_final_report_v1.0.pdf (accessed on 25 Oct 2013).

Download references

Acknowledgments

Thanks to ESA/DLR for provision of the Remningstorp Pol-InSAR data sets and in-situ forest AGB data for the MOST-ESA DRAGON Pol-InSAR project. This work was partially supported by the National Natural Science Foundation of China under Grant 41401480, the National key basic research development program (973 Program) sub-project under Grant 2013CB733404, and the Introduction talent project in Nanjing University of Posts and Telecommunications under grant NY213105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenmei Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, E., Li, Z. et al. Assessing Performance of Tomo-SAR and Backscattering Coefficient for Hemi-Boreal Forest Aboveground Biomass Estimation. J Indian Soc Remote Sens 44, 41–48 (2016). https://doi.org/10.1007/s12524-015-0468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0468-y

Keywords

Navigation