Skip to main content
Log in

A new process of reconstructing archaeological fires from their impact on sediment: a coupled experimental and numerical approach based on the case study of hearths from the cave of Les Fraux (Dordogne, France)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

A novel approach to the intensity of archaeological fires is proposed, based on a combination of archaeological observations and analyses of sedimentary hearths with relevant proxies obtained from using experimental combustion structures. In this work, two different structures were built and monitored. They aimed at reproducing two types of archaeological hearth morphology encountered at the Bronze Age site of the cave of Les Fraux (Saint Martin de Fressengeas, Dordogne, France). A series of fires was constructed and a large amount of data was collected: temperature curves, wood consumption and observations on substratum evolution. A numerical code for heat transfer was developed to model heat propagation from the surface to the underlying sedimentary layers, the input parameters of which were adapted to fit the thermal evolution observed with the experimental fires. We found that two archaeological parameters are fundamental to characterise the intensity of the fire: the paleotemperature reached at the surface of the burnt sediment (which in our case was determined by thermoluminescence analyses) and the depth of the rubefaction front as an indicator of a 250 °C isothermal surface. We then estimated the duration of an equivalent single fire that would correspond to one of the archaeological hearths investigated. Finally, with the wood consumption recorded during the fire experiments, and the estimated firing duration, the energy involved was evaluated. When generalised to the study of archaeological hearths, this approach could be of great interest in firing intensity evaluation (temperature/time/energy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. After the extinction of the second fire, we used the hearth, free from ashes, to cook two long sausages set in a spiral on it. The cooking of the sausage took a rather long time (30 min) because the hearth had cooled more rapidly than expected. It left a greasy layer on the entire hearth (Fig. 8). The third fire burnt this fat that left pluricentimetric black marks (Fig. 8) on half the surface of the hearth. After the fourth fire, we moved ashes and embers from the shaped hearth to get a hotter surface than after the second fire, and the time to cook a sausage at the same point as the preceding experiment was only 15 min. It left also black marks in a circle form like the sausage (Fig. 8).

References

  • Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27(10):931–947

    Article  Google Scholar 

  • Albert RM, Bar‐Yosef O, Meignen L, Weiner S (2003) Quantitative phytolith study of hearths from the Natufian and Middle Paleolithic levels of Hayonim cave (Galilee, Israel). J Archaeol Sci 30:461–480

    Article  Google Scholar 

  • Alperson-Afil N (2012) Archaeology of fire: methodological aspects of reconstructing fire history of prehistoric archaeological sites. Earth Sci Rev 113(3–4):111–119

    Article  Google Scholar 

  • Alperson-Afil N, Richter D, Goren-Inbar N (2007) Phantom hearths and the use of fire at Gesher Benot Ya’aqov, Israel. PaleoAnthropology 2007:1–15

    Google Scholar 

  • Backhouse PN, Johnson E (2007) Where were the hearths: an experimental investigation of the archaeological signature of prehistoric fire technology in the alluvial gravels of the Southern Plains. J Archaeol Sci 34:1367–1378

    Article  Google Scholar 

  • Beeching A and Gascó J (1989) Les foyers de la Préhistoire récente du Sud de la France (descriptions, analyses, et essais d'interprétation). In: Olive M and Taborin Y dir., Nature et fonction des foyers préhistoriques, Actes du Colloque International de Nemours (1987), Mémoire du Musée de Préhistoire d'Île de France, Ed. APRAIF: 275-292

  • Bellomo RV (1993) A methodological approach for identifying archaeological evidence of fire resulting from human activities. J Archaeol Sci 20:525–553

    Article  Google Scholar 

  • Bentsen SE (2012) Size matters: preliminary results from an experimental approach to interpret middle stone age hearths. Quat Int 270:95–102

    Article  Google Scholar 

  • Braadbaart F, Poole I, Huisman HDJ, Van Os B (2012) Fuel, fire and heat: an experimental approach to highlight the potential of studying ash and char remains from archaeological contexts. J Archaeol Sci 39:836–847

    Article  Google Scholar 

  • Brodard A (2013) Caractérisation thermique de structures de combustion par les effets de la chauffe sur les minéraux : thermoluminescence et propriétés magnétiques de foyers de la grotte des Fraux (Dordogne), Thèse de doctorat en Physique des Archéomatériaux, Université Michel de Montaigne, Bordeaux: 484 p. (https://tel.archives-ouvertes.fr/tel-00870483)

  • Brodard A, Guibert P, Lévêque F, Mathé V, Carozza L, Burens A (2012) Thermal characterization of ancient hearths from the cave of Les Fraux (Dordogne, France) by thermoluminescence and magnetic susceptibility measurements. Quat Geochronol 10:353–358

    Article  Google Scholar 

  • Brown KS, Marean CW, Herries AIR, Jacobs Z, Tribolo C, Braun D, Roberts DL, Meyer MC, Bernatchez J (2009) Fire as an engineering tool of early modern humans. Science 325:859–862

    Article  Google Scholar 

  • Burens A, Grussenmeyer P, Carozza L, Lévêque F, Guillemin S, Mathé V (2014) Benefits of an accurate 3D documentation in understanding the status of the bronze age heritage cave « Les Fraux » (France). Int J Herit Stud Digit Era 3(1):179–195

    Article  Google Scholar 

  • Canti MG, Linford N (2000) The effects of fires on archaeological soils and sediments: temperature and colour relationships. Proc Prehist Soc 66:385–395

    Article  Google Scholar 

  • Carozza L, Burens A, Billaud Y, Ferullo O, Bourrillon R, Petrognani S, Tosello G, Goineaud E&M (2009) L'horizontal et le vertical - L'Âge du bronze de la grotte des Fraux (Saint-Martin-de-Fressengeas - Dordogne). In: De méditerranée et d'ailleurs… Mélanges offerts à Jean Guilaine, Archives d'Ecologie Préhistorique, Toulouse: 159-172, 8 fig

  • Carrancho Á, Villalaín JJ (2011) Different mechanisms of magnetisation recorded in experimental fires: Archaeomagnetic implications. Earth Planet Sci Lett 312(1):176–187

    Article  Google Scholar 

  • Carrancho A, Villalaín JJ, Angelucci DE, Dekkers MJ, Vallverdú J, Vergès JM (2009) Rockmagnetism analyses as a tool to investigate archaeological fired sediments: a case study of Mirador cave (Sierra de Atapuerca, Spain). Geophys J Int 17:79–93

    Article  Google Scholar 

  • Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576

    Article  Google Scholar 

  • Courty M-A (1983) Interprétation des aires de combustion par la micro-morphologie. Bulletin de la Société Préhistorique Française 80:169–171

    Google Scholar 

  • Courty M-A (1984) Formation et évolution des accumulationscendreuses : approche micromorphologique, Influences méridionales dans l’Est et le Centre-Est de la France au Néolithique : le rôle du Massif central, Actes du 8e colloque interrégional sur le Néolithique, Le Puy-en-Velay, 3-4 oct. 1981, Centre de Recherche et d’Étudespréhistoriques de l’Auvergne (CREPA), cahier 1, Clermont-Ferrand: 341–353

  • Driscoll K, Menuge J (2011) Recognising burnt vein quartz artefacts in archaeological assemblages. J Archaeol Sci 38:2251–2260

    Article  Google Scholar 

  • Francescato V, Antonini E, Zuccoli Bergomi L (2008) Wood fuels handbook. AIEL - Italian Agriforest Energy Association: 83 p. http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HANDBOOK_BTC_EN.pdf

  • Gascó J (2003) Propositions de vocabulaire. In: M.-C. Frère-Sautot dir., Le feu domestique et ses structures au Néolithique et aux Âges des Métaux, Actes du colloque de Bourg-en-Bresse et Beaune, 7-8octobre 2000, coll. Préhistoires, 9, éd. Monique Mergoil, Montagnac:109–112

  • Goldberg P, Berna F (2010) Micromorphology and context. Quat Int 214:56–62

    Article  Google Scholar 

  • Goldberg P, Miller C, Schiegl S, Ligouis B, Berna F, Conard NJ, Wadley L (2009) Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeol Anthropol Sci 1:95–122

    Article  Google Scholar 

  • Goldberg P, Dibble H, Berna F, Sandgathe D, McPherron SJP, Turq A (2012) New evidence on Neanderthal use of fire: examples from Roc de Marsal and Pech de l´Azé IV. Quat Int 247:325–340

    Article  Google Scholar 

  • Gualtieri ML, Gualtieri AF, Gagliardi S, Ruffini P, Ferrari R, Hanuskova M (2010) Thermal conductivity of fired clays: effects of mineralogical and physical properties of the raw materials. Appl Clay Sci 49:269–275

    Article  Google Scholar 

  • Gur-Arieh S, Mintz E, Boaretto E, Shahack-Gross R (2013) An ethnoarchaeological study of cooking installations in rural Uzbekistan: development of a new method for identification of fuel sources. J Archaeol Sci 40(12):4331–4347

    Article  Google Scholar 

  • Henry D (2012) The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quat Int 247:246–266

    Article  Google Scholar 

  • Julien M (1972) Témoins relatifs au feu. Fouilles de Pincevent. Essai d'analyse ethnographique d'un habitatmagdalénien. (la section 36) 7ème. Supplément Gallia Préhistoire. C.N.R.S. France

  • Jrad A, Quesnel Y, Rochette P, Jallouli C, Khatib S, Boukbida H, Demory F (2014) Magnetic Investigations of Buried Palaeohearths Inside a Palaeolithic Cave (Lazaret, Nice, France). Archaeol Prospect 21: 87–101

  • Leroi-Gourhan A (1973) Séminaire sur les structures d’habitat, les témoins de combustion. Collège de France, Laboratoire d’Ethnologie Préhistorique, Paris, n°52, 43 p

  • Leroi-Gourhan A and Brezillon M (1972) Fouilles de Pincevent. La section 36. Essai d’analyse ethnographique d’un habitat magdalénien. Gallia préhistoire, supplément 7, CNRS Ed. 2 volumes, 331 p., 199 fig

  • Liedgren LG, Östlund L (2011) Heat, smoke and fuel consumption in high mountain stállo-hut, northern Sweden - Experimental burning of fresh birch wood during winter. J Archaeol Sci 38:903–912

    Article  Google Scholar 

  • Lin J, Grandgeorge J-D, Braymand S, Fond C (2012) Caractérisation thermique des sols pour le régime transitoire. 2ème colloque de la construction durable dans le Rhin Supérieur, Strasbourg (15 novembre 2012)

  • Mallol C, Marlowe FW, Wood BM, Porter CC (2007) Earth, wind, and fire: ethnoarchaeological signals of Hadza fires. J Archaeol Sci 34:2035–2052

    Article  Google Scholar 

  • Mallol C, Hernandez CM, Cabanes D, Machado J, Sistiaga A, Pérez L, Galvan B (2013a) Human actions performed on simple combustion structures: an experimental approach to the study of Middle Palaeolithic fire. Quat Int 315:3–15

    Article  Google Scholar 

  • Mallol C, Hernandez CM, Cabanes D, Sistiaga A, Machado J, Rodriguez A, Pérez L, Galvan B (2013b) The black layer of Middle Palaeolothic combustion structures. Interpretation and archaeostratigraphic implications. J Archaeol Sci 40:2515–2537

    Article  Google Scholar 

  • Mentzer C (2014) Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J Archaeol Method Theory 21(3):616–668

    Article  Google Scholar 

  • Miller CE, Conard NJ, Goldberg P, Berna F (2010) Analyse micromorphologique de structures de combustion expérimentales anthropiquement remaniées. In: Théry-Parisot I, Chabal L, Costamagno S dir., Taphonomie de la combustion des résidus organiques et des structures de combustion en contexte archéologique., Valbonne (27-29 mai 2008), P@leoethnologie 2: 25-37

  • Morinaga H, Inokuchi H, Yamashita H, Ono A, Inada T (1999) Magnetic detection of heated soils at Paleolithic sites in Japan. Geoarchaeology 14(5):377–399

    Article  Google Scholar 

  • Mourre V, Villa P, Henshilwood CS (2010) Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science 330:659–662

    Article  Google Scholar 

  • Muhieddine M, Canot E, March RJ, Delannay R (2011) Coupling heat conduction and water-steam flow in saturated porous medium. Int J Numer Methods Eng 85:1390–1414

    Article  Google Scholar 

  • Oti JE, Kinuthia JM, Bai J (2010) Design thermal values for unfired clay bricks. Mater Des 31:104–112

    Article  Google Scholar 

  • Powell AJ, Wheeler J, Batt CM (2012) Identifying archaeological wood stack charcoal production sites using geophysical prospection: magnetic characteristics from a modern wood stack charcoal burn site. J Archaeol Sci 39:1197–1204

    Article  Google Scholar 

  • Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Livage J, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39:135–144

    Article  Google Scholar 

  • Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE (2013) Heat treatment in the South African Middle Stone Age: temperature induced transformations of silicrete and their technological implications. J Archaeol Sci 40:3519–3531

    Article  Google Scholar 

  • Sergant J, Crombé P, Perdaen Y (2006) The 'invisible' hearths: a contribution to the discernment of Mesolithic non-structured surface hearths. J Archaeol Sci 33:999–1007

    Article  Google Scholar 

  • Sestier C (2007) Etude du profil thermique d'une structure de combustion en meule (pitkiln): four ou foyer simple ? In Fire as an Instrument: The Archaeology of Pyrotechnologies, D. Gheorghiu dir.: 25-31

  • Stapert D (1989) The ring and sector method, intrasite spatial analysis of Stone Age sites, with special reference to Pincevent. Palaeohistoria 31:1–57

    Google Scholar 

  • Théry-Parisot I (2002) Fuel management (bone and wood) during the lower Aurignacian in the Pataud rock shelter (lower palaeolothic, Les Eyzies de Tayac, Dordogne, France). Contribution of experimentation. J Archaeol Sci 29:1415–1421

    Article  Google Scholar 

  • Théry-Parisot I, Henry A (2012) Seasoned or green? Radial cracks analysis as a method for identifying the use of green wood as fuel in archaeological charcoal. J Archaeol Sci 39:381–388

    Article  Google Scholar 

  • Théry-Parisot I, Texier P-J (2006) La collecte du bois de feu dans le site moustérien de la Combette (Bonnieux, Vaucluse, France): implications paléo-économiques et paléo-écologiques. Approche morphométrique des charbons de bois. Bulletin de la Société Préhistorique Française 103(3):453–463

    Article  Google Scholar 

  • Thiébault S (2011) Résultats préliminaires de l’identification des charbons de bois de la grotte des Fraux - Données anthracologiques pour une approche de l’environnement végétal ligneux. In Carozza L (2011), L'âge du Bronze de la grotte des Fraux - Saint-Marin-de-Fressengeas (Dordogne). Rapport de fouille programmée annuelle, Service Régional de l'Archéologie d'Aquitaine, Bordeaux: 98 p

  • Wattez J (1988) Contribution à la connaissance des foyers préhistoriques par l’étude des cendres. Bulletin de la Société Préhistorique Française 85:352–356

    Article  Google Scholar 

  • Wattez J (1992) Dynamique de formation des structures de combustion de la fin du Paléolithique au Néolithique moyen. Approche méthodologique et implications. Thèse nouveau régime, Université Paris 1, 438 p

  • Werts SP, Jahren AH (2007) Estimation of temperature beneath archaeological campfires using carbon stable isotope composition of soil organic matter. J Archaeol Sci 34:850–857

    Article  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to Edmond and Marcelle Goineaud, owners of the cave, and to M. Fargeot, mayor of Saint-Martin-de-Fressengeas, for their help and trust in a colony of scientists.

This research was supported by the CNRS INEE (SEEG, cave of Les Fraux), CNRS-INSHS and partly by the CNRS AIR Archéométrie, and by the French Ministry of Culture and Communication (DRAC Aquitaine). University Bordeaux Montaigne gave a grant for Aurélie Brodard’s PhD. Additional support was provided by the ANR (Agence Nationale de la Recherche) labex LaScArBx (label of excellence Archaeological Sciences Bordeaux) from the ANR-10-LABEX-52 programme. We thank the two anonymous reviewers for their constructive comments that improved the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Brodard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodard, A., Lacanette-Puyo, D., Guibert, P. et al. A new process of reconstructing archaeological fires from their impact on sediment: a coupled experimental and numerical approach based on the case study of hearths from the cave of Les Fraux (Dordogne, France). Archaeol Anthropol Sci 8, 673–687 (2016). https://doi.org/10.1007/s12520-015-0250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-015-0250-7

Keywords

Navigation