Skip to main content

Advertisement

Log in

Sclerochronological analysis of archaeological mollusc assemblages: methods, applications and future prospects

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Accreting skeletal tissues found in bone, teeth, otoliths and molluscan shell act as sensitive recorders of local environmental and climatic conditions. Owing to their robust nature, ubiquity and abundance in the archaeological record as well as the potential for high-resolution data acquisition, the accreting skeletal tissues of archaeological molluscs are increasingly employed as palaeoenvironmental proxies. Researchers have chiefly utilised such proxies to extend instrumental records of environmental conditions through palaeoenvironmental reconstruction and explore the impact of environmental and climatic change on human populations. However, the use of environmental proxies from the archaeological record can be hampered by a number of methodological challenges including inadequate sampling strategies, appropriate calibration, the use of inappropriate proxies and the broad extrapolation of localised results. This paper reviews the use of molluscan shell from archaeological contexts as palaeoenvironmental proxies. We focus on the application of sclerochronology—a suite of high-resolution physical and geochemical data recovery methods widely used in conjunction with molluscan shell. This paper presents an overview of the potential of these techniques in approaching more nuanced understandings of human-environment interactions and how they can be more successfully incorporated into archaeological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre ML, Leng MJ, Spiro B (1998) Variation in isotopic composition (C, O and Sr) of Holocene Mactra isabelleana (Bivalvia) from the coast of Buenos Aires Province, Argentina. The Holocene 8:613–621

    Article  Google Scholar 

  • Allison N (1996) Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470

    Article  Google Scholar 

  • Álvarez M, Briz Godino I, Balbo A, Madella M (2011) Shell middens as archives of past environments, human dispersal and specialized resource management. Quat Int 239:1–7

    Article  Google Scholar 

  • Anderson A (2009) Epilogue: changing archaeological perspectives upon historical ecology in the Pacific islands. Pac Sci 63:747–757

    Article  Google Scholar 

  • Andrews AH, Gobalet KW, Jones TL (2003) Reliability assessment of season-of-capture determination from archaeological otoliths. Bull (South Calif Acad Sci) 102:66–78

  • Andrus CF (2011) Shell midden sclerochronology. Quaternary Sci Rev 30:2892–2906

    Article  Google Scholar 

  • Andrus CF, Crowe D (2000) Geochemical analysis of Crassostrea virginicia as a method to determine season of capture. J Archaeol Sci 27:33–43

    Article  Google Scholar 

  • Andrus CF, Rich KW (2008) A preliminary assessment of oxygen isotope fractionation and growth increment periodicity in the estuarine clam Rangia cuneata. Geo-Mar Lett 28:301–308

    Article  Google Scholar 

  • Andrus CFT, Thompson VD (2012) Determining the habitats of mollusk collection at the Sapelo Island shell ring complex, Georgia, USA using oxygen isotope sclerochronology. J Archaeol Sci 39:215–228

    Article  Google Scholar 

  • Bailey GN, Deith MR, Shackleton NJ (1983) Oxygen isotope analysis and seasonality determinations: limits and potential of a new technique. Am Antiq 48:390–399

    Article  Google Scholar 

  • Balée W (1998) Historical ecology: premises and postulates. In: Balée W (ed) Advances in historical ecology. Columbia University Press, New York, pp 13–29

    Google Scholar 

  • Balmain J, Hannoyer B, Lopez E (1999) Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. J Biomed Mater Res 48:749–754

    Article  Google Scholar 

  • Barker B (1996) Maritime hunter-gatherers on the tropical coast: a social model for change. In: Ulm S, Lilley I, Ross A (eds) Australian archaeology ‘95: proceedings of the 1995 Australian archaeological association annual conference, vol 6. Tempus. University of Queensland, Brisbane, pp 31–44

  • Beck JW et al (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  Google Scholar 

  • Bemis BE, Geary DH (1996) The usefulness of bivalve stable isotope profiles as environmental indicators: data from the eastern Pacific Ocean and the southern Caribbean Sea. PALAIOS 11:328–339

    Article  Google Scholar 

  • Bernstein DJ (1990) Prehistoric seasonality studies in coastal southern New England. Am Anthropol 92:96–115

    Article  Google Scholar 

  • Bird M (1992) The impact of tropical cyclones on the archaeological record: an Australian example. Archaeol Ocean 27:75–86

    Article  Google Scholar 

  • Bird M (1995) Coastal morphodynamics and the archaeological record: further evidence from Upstart Bay, North Queensland. Aust Archaeol 57–58

  • Birks HJB, Heiri O, Seppa H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. Open Ecol J 3:68–110

    Article  Google Scholar 

  • Böhm F, Joachimski MM, Dullo W, Eisenhauer A, Lehnert H, Reitner J, Wörheide G (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim Cosmochim Acta 64:1695–1703

    Article  Google Scholar 

  • Brockwell S, Marwick B, Bourke P, Faulkner P, Willan R (2013) Late Holocene climate change and human behavioural variability in the coastal wet-dry tropics of northern Australia: evidence from a pilot study of oxygen isotopes in molluscan shells. Aust Archaeol 76:21–33

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–199

    Article  Google Scholar 

  • Burchell M (2013) Shellfish harvest on the coast of British Columbia: the archaeology of settlement and subsistence through high-resolution stable isotope analysis and sclerochronology. Dissertation, McMaster University

  • Burchell M, Cannon A, Hallmann N, Schwarcz HP, Schöne BR (2013a) Inter-site variability in the season of shellfish collection on the central coast of British Columbia. J Archaeol Sci 40:626–636

    Article  Google Scholar 

  • Burchell M, Cannon A, Hallmann N, Schwarcz HP, Schöne BR (2013b) Refining estimates for the season of shellfish collection on the Pacific northwest coast: applying high-resolution stable oxygen isotope analysis and sclerochronology. Archaeometry 55:258–276

    Article  Google Scholar 

  • Burchell M, Hallman N, Martindale A, Cannon A, Schöne BR (2013c) Seasonality and intensity of shellfish harvesting on the north coast of British Columbia. J Island Coastal Archaeol 8:152–169

    Article  Google Scholar 

  • Butler PG, Richardson CA, Scourse JD, Wanamaker AD Jr, Shammon TM, Bennell JD (2010) Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islanica. Quaternary Sci Rev 29:1614–1632

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  Google Scholar 

  • Carré M et al (2005a) Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 228:4–25

    Article  Google Scholar 

  • Carré M, Ilhem B, Michel F, Lavallée D (2005b) Strong El Niño events during the early Holocene: stable isotope evidence from Peruvian sea shells. The Holocene 15:42–47

    Article  Google Scholar 

  • Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70:4906–4920

    Article  Google Scholar 

  • Carré M, Klaric L, Lavallée D, Julien M, Bentaleb I, Fontugne M, Kawka O (2009) Insights into early Holocene hunter-gatherer mobility on the Peruvian southern coast from mollusk gathering seasonality. J Archaeol Sci 36:1173–1178

    Article  Google Scholar 

  • Chivas AR et al (2001) Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quat Int 83–85:19–46

    Article  Google Scholar 

  • Claassen CL (1988) Techniques and controls for the determination of seasonality in shellfishing activities. In: Webb RE (ed) Recent developments in environmental analysis in Old and New World archaeology. BAR, Oxford, pp 51–66

    Google Scholar 

  • Claassen C (1991) Normative thinking and shell-bearing sites. In: Schiffer MB (ed) Archaeological method and theory, vol 3. University of Arizona Press, Tuscon, pp 249–298

    Google Scholar 

  • Claassen CL (1998) Shells. Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Clark GR (1974) Growth lines in invertebrate skeletons. Annu Rev Earth Planet Sci 2:77–99

    Article  Google Scholar 

  • Cohen AL, Tyson PD (1995) Sea-surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall. The Holocene 5:304–312

    Article  Google Scholar 

  • Cohen AL, Parkington JE, Brundrit GB, van der Merwe NJ (1992) A Holocene marine climate record in mollusc shells from the Southwest African coast. Quat Res 38:379–385

    Article  Google Scholar 

  • Collins JD (2012) Assessing mussel shell diagenesis in the modern vadose zone at Lyon’s Bluff (22OK520), Northeast Mississippi. J Archaeol Sci 39:3694–3705

    Article  Google Scholar 

  • Colonese AC, Verdún-Castelló E, Álvarez M, Briz i Godino I, Zurro D, Salvatelli L (2012) Oxygen isotopic composition of limpet shells from the Beagle Channel: implications for seasonal studies in shell middens of Tierra del Fuego. J Archaeol Sci 39:1738–1748

    Article  Google Scholar 

  • Cornu S, Pätzold J, Bard E, Meco J, Cuerda-Barcelo J (1993) Paleotemperature of the last interglacial period based on δ18O of Strombus bubonius from the western Mediterranean Sea. Palaeogeogr Palaeoclimatol Palaeoecol 103:1–20

    Article  Google Scholar 

  • Coutts PJF (1970) Bivalve-growth patterning as a method for seasonal dating in archaeology. Nature 226:874

    Article  Google Scholar 

  • Culleton BJ, Kennett DJ, Jones TL (2009) Oxygen isotope seasonality in a temperate estuarine shell midden: a case study from CA-ALA-17 on the San Francisco Bay, California. J Archaeol Sci 36:1354–1363

    Article  Google Scholar 

  • Custer JF, Doms KR (1990) Analysis of microgrowth patterns of the American oyster (Crassostrea virginica) in the Middle Atlantic Region of Eastern North America: archaeological applications. J Archaeol Sci 17:151–160

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • David B, Lourandos H (1999) Landscape as mind: land use, cultural space and change in north Queensland prehistory. Quat Int 59:107–123

    Article  Google Scholar 

  • Deith MR (1983) Molluscan calendars: the use of growth-line analysis to establish seasonality of shellfish collection at the Mesolithic site of Morton, Fife. J Archaeol Sci 10:423–441

    Article  Google Scholar 

  • Dettman DL, Reische AK, Lohmann KC (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochim Cosmochim Acta 63:1049–1057

    Article  Google Scholar 

  • Eerkens JW, Byrd BF, Spero HJ, Fritschi AK (2013) Stable isotope reconstructions of shellfish harvesting seasonality in an estuarine environment: implications for Late Holocene San Francisco Bay settlement patterns. J Archaeol Sci 40:2014–2024

    Article  Google Scholar 

  • Eisma D, Mook WG, Das HA (1976) Shell characteristics, isotopic composition and trace-element contents of some euryhaline molluscs as indicators of salinity. Palaeogeogr Palaeoclimatol Palaeoecol 19:39–62

    Article  Google Scholar 

  • Elliot M, deMenocal PB, Linsley BK, Howe SS (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem Geophys Geosyst 4:1056

  • Elsdon TS, Gillanders BM (2005) Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Mar Freshw Res 56:609–617

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62:417–426

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Evans JW (1972) Tidal growth increments in the cockle Clinocardium nuttalli. Science 176:416–417

    Article  Google Scholar 

  • Faulkner P (2008) Patterns of chronological variability in occupation on the coastal margin of Blue Mud Bay. Archaeol Ocean 43:81–88

  • Faulkner P (2013) Life on the margins: an archaeological investigation of Late Holocene economic variability, Blue Mud Bay, Northern Australia, vol 38. Terra Australis. ANU E Press, Canberra

    Google Scholar 

  • Fenger TL (2006) Sclerochronology and geochemical variation in limpet shells (Patella vulgata and Patella stellaeformis): evaluating a new proxy for Holocene climate change in coastal areas. Masters thesis, University of North Carolina

  • Fenger T, Surge D, Schöne BR, Milner N (2007) Sclerochronology and geochemical variation in limpet shells (Patella vulgata): a new archive to reconstruct coastal sea surface temperature. Geochem Geophys Geosyst 8:Q07001

  • Foster LC, Allison N, Finch AA, Andersson C, Ninnemann US (2009) Controls on δ18O and δ13C profiles within the aragonite bivalve Arctica islandica. The Holocene 19:549–558

  • Frankel D, Webb J, Pike-Tay A (2013) Seasonality and site function in Chalcolithic Cyprus. Eur J Archaeol 16:94–115

    Article  Google Scholar 

  • Freitas PS, Clarke LJ, Kennedy H, Richardson C, Abrantes F (2005) Mg/Ca, Sr/Ca, and stable-isotope (δ18O and δ13C) ratio profiles from the fan mussel Pinna nobilis: seasonal records and temperature relationships. Geochem Geophys Geosyst 6:Q04D14

  • Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F (2006) Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochim Cosmochim Acta 70:5119–5133

    Article  Google Scholar 

  • Friedman GM (1959) Identification of carbonate minerals by staining methods. J Sediment Res 29:87–97

    Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Geary DH, Brieske TA, Bemis BE (1992) The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of Strombid gastropod shells. PALAIOS 7:77–85

    Article  Google Scholar 

  • Ghosh P et al (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

  • Ghosh P, Eiler J, Campana SE, Feeney RF (2007) Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim Cosmochim Acta 71:2736–2744

    Article  Google Scholar 

  • Gillikin DP, De Ridder F, Ulens H, Elskens M, Keppens E, Baeyens W, Dehairs F (2005a) Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: implications for paleoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 228:70–85

    Article  Google Scholar 

  • Gillikin DP et al (2005b) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys Geosyst 6: Q05009

  • Gillikin DP, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006) Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13C, DIC and phytoplankton. Org Geochem 37:1371–1382

    Article  Google Scholar 

  • Godfrey M (1988) Oxygen isotope analysis: a means for determining the seasonal gathering of the Pipi (Donax deltoides) by Aborigines in prehistoric Australia. Archaeol Ocean 23:17–22

    Article  Google Scholar 

  • Goewert AE, Surge D (2008) Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop Chesapecten madisonius. Geo-Mar Lett 28:327–338

    Article  Google Scholar 

  • Goodwin DH, Flessa KW, Schöne BR, Dettman DL (2001) Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. PALAIOS 16:387–398

    Article  Google Scholar 

  • Goodwin DH, Schöne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. PALAIOS 18:110–125

    Article  Google Scholar 

  • Goodwin DH, Flessa KW, Téllez-Duarte MA, Dettman DL, Schöne BR, Avila-Serrano GA (2004) Detecting time-averaging and spatial mixing using oxygen isotope variation: a case study. Palaeogeogr Palaeoclimatol Palaeoecol 205:1–21

    Article  Google Scholar 

  • Griffiths J (2008) Secondary ion mass spectrometry. Anal Chem 80:7194–7197

    Article  Google Scholar 

  • Gröcke DR, Gillikin D (2008) Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment. Geo-Mar Lett 28:265–269

    Article  Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol Isot Geosci Sect 59:59–74

    Article  Google Scholar 

  • Hallmann N (2011) High-resolution reconstruction of Holocene climate variability and environmental change in the North Pacific using bivalve shells. Dissertation, Univeristy of Mainz

  • Hallmann N, Schöne BR, Strom A, Fiebig J (2008) An intractable climate archive—sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeogr Palaeoclimatol Palaeoecol 269:115–126

    Article  Google Scholar 

  • Hallmann N, Burchell M, Schöne BR, Irvine G, Maxwell D (2009) High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. J Archaeol Sci 36:2353–2365

    Article  Google Scholar 

  • Hallmann N, Burchell M, Brewster N, Martindale A, Schöne BR (2013) Holocene climate and seasonality of shell collection at the Dundas Islands Group, northern British Columbia, Canada—a bivalve sclerochronological approach. Palaeogeogr Palaeoclimatol Palaeoecol 373:163–172

    Article  Google Scholar 

  • Hanson NN, Wurster CM, EIMF, Todd CD (2010) Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith δ18O values of wild Atlantic salmon (Salmo salar). Rapid Commun Mass Spectrom 24:2491–2498

    Article  Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60:3075–3084

    Article  Google Scholar 

  • Haskin HH (1954) Age determinations in molluscs. Trans N Y Acad Sci 16:300–304

    Article  Google Scholar 

  • Hassan FA, Hamdan MA, Flower RJ, Keatings K (2012) The oxygen and carbon isotopic records in Holocene freshwater mollusc shells from the Faiyum paleolakes, Egypt: their paleoenvironmental and paleoclimatic implications. Quat Int 266:175–187

    Article  Google Scholar 

  • Hawkes GP, Day RW, Wallace MW, Nugent KW, Bettiol AA, Jamieson DN, Williams MC (1996) Analysing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J Shellfish Res 15:659–666

    Google Scholar 

  • Helama S, Hood BC (2011) Stone Age midden deposition assessed by bivalve sclerochronology and radiocarbon wiggle-matching of Arctica islandica shell increments. J Archaeol Sci 38:452–460

    Article  Google Scholar 

  • Henry KM, Cerrato RM (2007) The annual macroscopic growth pattern of the northern quahog [hard clam, Mercenaria mercenaria (L.)], in Narragansett Bay, Rhode Island. J Shellfish Res 26:985–993

    Article  Google Scholar 

  • Hinton J (2012) Life in a shell: using archaeological shell assemblages for palaeoenvironmental reconstruction: preliminary isotope analysis of Polymesoda (Gelonia) coaxans (Gmelin, 1791) from Bentinck Island, Gulf of Carpentaria. Honours thesis, The University of Queensland

  • Hiscock P (1999) Holocene coastal occupation of western Arnhem Land. In: Hall J, McNiven I (eds) Australian coastal archaeology. Department of Archaeology and Natural History, Australian National University, Canberra, pp 91–103

    Google Scholar 

  • Hudson JH, Shinn EA, Halley RB, Lidz B (1976) Sclerochronology: a tool for interpreting past environments. Geology 4:361–364

    Article  Google Scholar 

  • Hufthammer AK, Hoie H, Folkvord A, Geffen AJ, Andersson C, Ninnemann US (2010) Seasonality of human site occupation based on stable isotope ratios on cod otoliths. J Archaeol Sci 37:78–84

    Article  Google Scholar 

  • Jew NP, Erlandson JM, Watts J, White FJ (2013) Shellfish, seasonality, and stable isotope sampling: δ18O analysis of mussel shells from an 8,800-year-old shell midden on California’s Channel Islands. J Island Coastal Archaeol 8:170–189

    Article  Google Scholar 

  • Jones DS (1983) Sclerochronology: reading the record of the molluscan shell: annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity. Am Sci 71:384–391

    Google Scholar 

  • Jones TL, Kennett DJ (1999) Late Holocene sea temperatures along the central California coast. Quat Res 51:74–82

    Article  Google Scholar 

  • Jones DS, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. PALAIOS 11:340–346

    Article  Google Scholar 

  • Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological records of temperature and growth from shells of Marcenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234

  • Jones DS, Quitmyer IR, Andrus CFT (2004) Seasonal shell growth and longevity in Donax variabilis from northeastern Florida: evidence from oxygen isotopes. J Shellfish Res 23:707–715

    Google Scholar 

  • Jones DS, Quitmyer IR, Andrus CFT (2005) Oxygen isotopic evidence for greater seasonality in Holocene shells of Donax variabilis from Florida. Palaeogeogr Palaeoclimatol Palaeoecol 228:96–108

    Article  Google Scholar 

  • Keith ML, Anderson GM, Eichler R (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim Cosmochim Acta 28:1757–1786

    Article  Google Scholar 

  • Kennett D, Voorhies B (1995) Middle Holocene periodicities in rainfall inferred from oxygen and carbon isotopic fluctuations in prehistoric tropical estuarine mollusc shells. Archaeometry 37:157–170

    Article  Google Scholar 

  • Kennett D, Voorhies B (1996) Oxygen isotopic analysis of archaeological shells to detect seasonal use of wetlands on the southern Pacific coast of Mexico. J Archaeol Sci 23:689–705

    Article  Google Scholar 

  • Killingley JS (1981) Seasonality of mollusk collecting determined from O-18 profiles of midden shells. Am Antiq 46:152–158

    Article  Google Scholar 

  • Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Article  Google Scholar 

  • Kingston AW, Gröcke DR, Burchell M (2008) A multiaxial growth analysis of stable isotopes in the modern shell of Saxidomus gigantea: implications for sclerochronology studies. Geochem Geophys Geosyst 9:doi:10.1029/2007GC001807

  • Kirby MX, Soniat TM, Spero HJ (1998) Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). PALAIOS 13:560–569

    Article  Google Scholar 

  • Klein RT, Lohmann KC, Thayer CW (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60:4207–4221

    Article  Google Scholar 

  • Lightfoot KG, Cerrato RM (1988) Prehistoric shellfish exploitation in coastal New York. J Field Archaeol 15:141–149

    Google Scholar 

  • Lightfoot KG, Cerrato RM (1989) Regional patterns of clam harvesting along the Atlantic coast of North America. Archaeol East N Am 17:31–46

    Google Scholar 

  • Lourandos H (1997) Continent of hunter-gatherers: new perspectives in Australian prehistory. Cambridge University Press, Cambridge

    Google Scholar 

  • Lourandos H, Ross A (1994) The great ‘intensification debate’: its history and place in Australian archaeology. Aust Archaeol 39:54–63

    Google Scholar 

  • Lutz RA, Rhoads DC (1977) Anaerobiosis and a theory of growth line formation. Science 198:1222–1227

    Article  Google Scholar 

  • Mannino MA, Spiro B, Thomas KD (2003) Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J Archaeol Sci 30:667–679

    Article  Google Scholar 

  • Mannino MA, Thomas KD, Leng MJ, Piperno M, Tusa S, Tagliacozzo A (2007) Marine resources in the Mesolithic and Neolithic at the Grotta Dell’uzzo (Sicily): evidence from isotope analyses of marine shells. Archaeometry 49:117–133

    Article  Google Scholar 

  • Mannino MA, Thomas KD, Leng MJ, Sloane HJ (2008) Shell growth and oxygen isotopes in the topshell Osilinus turbinatus: resolving past inshore sea surface temperatures. Geo-Mar Lett 28:309–325

    Article  Google Scholar 

  • Mannino MA, Thomas KD, Leng MJ, Di Salvo R, Richards MP (2011) Stuck to the shore? Investigating prehistoric hunter-gatherer subsistence, mobility and territoriality in a Mediterranean coastal landscape through isotope analyses on marine mollusc shell carbonates and human bone collagen. Quat Int 244:88–104

    Article  Google Scholar 

  • Marchitto TM, Jones GA, Goodfriend GA, Weidman CR (2000) Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat Res 53:236–246

    Article  Google Scholar 

  • Marin F, Luquet G (2004) Molluscan shell proteins. Compt Rendus Palevol 3:469–492

    Article  Google Scholar 

  • Marwick B, Gagan MK (2011) Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat Sci Rev 30:3088–3098

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    Article  Google Scholar 

  • McConnaughey T, Gillikin D (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • McManus E, Montgomery J, Evans J, Lamb A, Brettell R, Jelsma J (2013) “To the land or to the sea”: diet and mobility in early medieval Frisia. J Island Coastal Archaeol 8:255–277

    Article  Google Scholar 

  • Merritt DA, Hayes JM (1994) Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry. Anal Chem 66:2336–2347

    Article  Google Scholar 

  • Milner N (2001) At the cutting edge: using thin sectioning to determine season of death of the European oyster, Ostrea edulis. J Archaeol Sci 28:861–873

    Article  Google Scholar 

  • Monks GG (1981) Seasonality studies. Adv Archaeol Method Theory 4:177–240

    Google Scholar 

  • Monks GG, Johnson R (1993) Estimating season of death from growth increment data: a critical review. Archaeozoologica 2:17–40

    Google Scholar 

  • Mook WG (1971) Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeogr Palaeoclimatol Palaeoecol 9:245–263

    Article  Google Scholar 

  • Mook WG, Vogel JC (1968) Isotopic equilibrium between shells and their environment. Science 159:874–875

    Article  Google Scholar 

  • Mucci A (1987) Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochim Cosmochim Acta 51:1977–1984

    Article  Google Scholar 

  • Nehrke G, Poigner H, Wilhelms-Dick D, Brey T, Abele D (2012) Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem Geophys Geosyst 13:1–8

    Article  Google Scholar 

  • Nunn PD (2003) Revising ideas about environmental determinism: human–environment relations in the Pacific Islands. Asia Pac Viewpoint 44:63–72

    Article  Google Scholar 

  • O’Connor S, Sullivan M (1994) Distinguishing middens and cheniers: a case study from the southern Kimberley, W.A. Archaeol Ocean 29:16–28

    Google Scholar 

  • Orton JH (1923) On the significance of “rings” on the shells of Cardium and other molluscs. Nature 112:10

    Article  Google Scholar 

  • Oschmann W (2009) Sclerochronology: editorial. Int J Earth Sci (Geol Rundsch) 98:1–2

    Article  Google Scholar 

  • Pannella G, Copeland M (1968) Biological and environmental rhythms reflected in molluscan shell growth. Memoir (Paleontol Soc) 2:64–80

    Google Scholar 

  • Petchey F et al (2012) 14C marine reservoir variability in herbivores and deposit-feeding gastropods from an open coastline, Papua New Guinea. Radiocarbon 54:967–978

    Article  Google Scholar 

  • Petchey F et al (2013) High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, southern coastal Papua New Guinea. Archaeol Anthropol Sci 5:69–80

    Article  Google Scholar 

  • Pike-Tay A, Cosgrove R (2002) From reindeer to wallaby: recovering patterns of seasonality, mobility, and prey selection in the Palaeolithic Old World. J Archaeol Method Theory 9:101–146

    Article  Google Scholar 

  • Prendergast AL, Stevens RE (2015) Molluscs (isotopes): analyses in environmental archaeology. In: The encyclopedia of global archaeology. Springer, New York

  • Prendergast AL, Azzopardi M, O’Connell TC, Hunt C, Barker G, Stevens RE (2013) Oxygen isotopes from Phorcus (Osilnus) tubinatus shells as a proxy for sea surface temperature in the central Mediterranean: a case study from Malta. Chem Geol 345:77–86

    Article  Google Scholar 

  • Reeves JM, Chivas AR, Garcia A, De Deckker P (2007) Palaeoenvironmental change in the Gulf of Carpentaria (Australia) since the last interglacial based on Ostracoda. Palaeogeogr Palaeoclimatol Palaeoecol 246:163–187

    Article  Google Scholar 

  • Rhoads DC, Lutz RA (eds) (1980) Skeletal growth of aquatic organisms. Plenum Press, New York

    Google Scholar 

  • Rhoads DC, Pannella G (1970) The use of molluscan shell growth pattern in ecology and paleoecology. Paleontology Paleobiology Geobiol 3:143–161

    Google Scholar 

  • Richardson CA (1987) Microgrowth patterns in the shell of the Malaysian cockle Anadara granosa (L.) and their use in age determination. J Exp Mar Biol Ecol 111:77–98

    Article  Google Scholar 

  • Richardson CA (1988) Exogenous and endogenous rhythms of band formation in the shell of the clam Tapes philippinarum (Adams et Reeve, 1850). J Exp Mar Biol Ecol 122:105–126

    Article  Google Scholar 

  • Robins RP, Stock EC (1990) The burning question: a study of molluscan remains from a midden on Moreton Island. In: Solomon S, Davidson I, Watson D (eds) Problem solving in taphonomy: archaeological and palaeontological studies from Europe, Africa and Oceania, vol 2. Tempus 2. University of Queensland, St Lucia, pp 80–100

    Google Scholar 

  • Rowland MJ (1983) Aborigines and environment in Holocene Australia: changing paradigms. Aust Aborig Stud 2:62–77

    Google Scholar 

  • Rowland MJ (1992) Climate change, sea-level rise and the archaeological record. Aust Archaeol 34:29–33

    Google Scholar 

  • Rowland MJ (1999) Holocene environmental variability: have its impacts been underestimated in Australian pre-history? Artefact (Melbourne) 22:11–48

    Google Scholar 

  • Rowland MJ, Ulm S (2012) Key issues in the conservation of the Australian coastal archaeological record: natural and human impacts. J Coast Conserv 16:159–171

    Article  Google Scholar 

  • Schöne BR (2008) The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28:269–285

    Article  Google Scholar 

  • Schöne BR (2013) Arctica islandica (Bivalvia): a unique palaeoenvironmental archive of the Northern Atlantic Ocean. Glob Planet Chang 111:199–225

    Article  Google Scholar 

  • Schöne BR, Surge D (2005) Looking back over skeletal diaries—high-resolution environmental reconstructions from accretionary hard parts of aquatic organisms. Palaeogeogr Palaeoclimatol Palaeoecol 228:1–3

    Article  Google Scholar 

  • Schöne BR, Surge D (2012) Bivalve sclerochronology and geochemistry. In: Selden PA (ed) Treatise of invertebrate paleontology, vol 1 Treatise Online 46:1–24

  • Schöne BR, Dunca E, Fiebig J, Pfeiffer M (2005a) Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 228:149–166

    Article  Google Scholar 

  • Schöne BR et al (2005b) Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. PALAIOS 20:78–92

    Article  Google Scholar 

  • Schöne BR, Zhang Z, Radermacher P, Thébault J, Jacob DE, Nunn EV, Maurer A-F (2011) Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeogr Palaeoclimatol Palaeoecol 302:52–64

    Article  Google Scholar 

  • Shackleton NJ (1973) Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry 15:133–143

    Article  Google Scholar 

  • Shulmeister J (1992) A Holocene pollen record from lowland tropical Australia. The Holocene 2:107–116

    Article  Google Scholar 

  • Shulmeister J, Lees BG (1995) Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. The Holocene 5:10–18

    Article  Google Scholar 

  • Sim R, Wallis LA (2008) Northern Australian offshore island use during the Holocene: the archaeology of Vanderlin Island, Sir Edward Pellew Group, Gulf of Carpentaria. Aust Archaeol 67:95–106

    Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901

    Article  Google Scholar 

  • Smalley PC, Stijfhoorn DE, Råheim A, Johansen H, Dickson JAD (1989) The laser microprobe and its application to the study of C and O isotopes in calcite and aragonite. Sediment Geol 65:211–221

    Article  Google Scholar 

  • Smith MA, Williams AN, Turney CSM, Cupper ML (2008) Human-environment interactions in Australian drylands: exploratory time-series analysis of archaeological records. The Holocene 18:389–401

    Article  Google Scholar 

  • Spötl C, Mattey D (2006) Stable isotope microsampling of speleothems for palaeoenvironmental studies: a comparison of microdrill, micromill and laser ablation techniques. Chem Geol 235:48–58

    Article  Google Scholar 

  • Stephens M, Rose J (2005) Modern stable isotopic (δ18O, δ2H, δ13C) variation in terrestrial, fluvial, estuarine and marine waters from north-central Sarawak, Malaysian Borneo. Earth Surf Process Landf 30:901–912

  • Stephens M, Mattey D, Gilbertson DD, Murray-Wallace CV (2008) Shell-gathering from mangroves and the seasonality of the Southeast Asian Monsoon using high-resolution stable isotopic analysis of the tropical estuarine bivalve (Geloina erosa) from the Great Cave of Niah, Sarawak: methods and reconnaissance of molluscs of early Holocene and modern times. J Archaeol Sci 35:2686–2697

    Article  Google Scholar 

  • Surge D, Lohmann KC (2008) Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica. J Geophys Res Biogeosci 113: G02001

  • Surge D, Walker KJ (2006) Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): implications for reconstructing seasonality. Palaeogeogr Palaeoclimatol Palaeoecol 237:182–190

    Article  Google Scholar 

  • Taft L (2013) Sclerochronological δ18O and δ13C patterns in shells of the aquatic gastropod Radix sp. as a new climatic and hydrologic archive for the Tibetan Plateau in sub-seasonal resolution. Dissertation, Freien Universität Berlin

  • Tanaka N, Monaghan MG, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523

    Article  Google Scholar 

  • Thompson VD, Andrus CFT (2013) Using oxygen isotope sclerochronology to evaluate the role of small islands among the Guale (AD 1325 to 1700) of the Georgia Coast, USA. J Island Coastal Archaeol 8:190–209

    Article  Google Scholar 

  • Turner JV (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1191

    Article  Google Scholar 

  • Turney CSM, Hobbs D (2006) ENSO influence on Holocene Aboriginal populations in Queensland, Australia. J Archaeol Sci 33:1744–1748

  • Ulm S (2013) ‘Complexity’ and the Australian continental narrative: themes in the archaeology of Holocene Australia. Quat Int 285:182–192

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Geol Soc Am Bull 62:399–416

    Article  Google Scholar 

  • Veth P, O’Connor S, Wallis LA (2000) Perspectives on ecological approaches in Australian archaeology. Aust Archaeol 50:54–66

    Google Scholar 

  • Walters I (1992) Farmers and their fires, fishers, and their fish: production and productivity in pre-European south-east Queensland. Dialect Anthropol 17:167–182

    Article  Google Scholar 

  • Wefer G, Killingley JS (1980) Growth histories of strombid snails from Bermuda recorded in their O-18 and C-13 profiles. Mar Biol 60:129–135

    Article  Google Scholar 

  • Weidel BC et al (2007) Biary of a bluegill (Lepomis macrochirus): daily δ13C and δ18O records in otoliths by ion microprobe. Can J Fish Aquat Sci 64:1641–1645

    Article  Google Scholar 

  • West CF (2013) Islands, coastlines, and stable isotopes: advances in archaeology and geochemistry [special section] vol 8. Routledge

  • White P (2011) Regional archaeology in Australia. Tech Rep Aust Mus Online 23:3–5

    Article  Google Scholar 

  • Williams AN, Ulm S, Goodwin ID, Smith M (2010) Hunter-gatherer response to Late Holocene climatic variability in northern and central Australia. J Quat Sci 25:831–838

    Article  Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250

    Article  Google Scholar 

  • Witbaard R, Duineveld GCA, de Wilde PAWJ (1997) A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen Ground (northern North Sea). J Mar Biol Assoc UK 77:801–816

  • Wurster CM, Patterson WP (2001) Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 170:81–100

    Article  Google Scholar 

  • Wurster CM, Patterson WP (2003) Metabolic rate of Late Holocene freshwater fish: evidence from δ13C values of otoliths. Paleobiology 29:492–505

    Article  Google Scholar 

  • Wurster CM, Patterson WP, Cheatham MM (1999) Advances in micromilling techniques: a new apparatus for acquiring high-resolution oxygen and carbon stable isotope values and major/minor elemental ratios from accretionary carbonate. Comput Geosci 25:1159–1166

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported under the Australian Research Council’s Discovery Projects funding scheme (project number DP120103179) and James Cook University Collaboration across Boundaries grant scheme. Sean Ulm is a recipient of an Australian Research Council Future Fellowship (project number FT120100656). We acknowledge Kaiadilt traditional owners of the South Wellesley Islands, as partners in aspects of the research presented here. The Kaiadilt Aboriginal Corporation collaborated in establishing the research framework for this project. We thank Costijn Zwart, Jon Nott, Leah Aspinall, Matthew Harris and Lydia Mackenzie for the continuous support, discussions and advice they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin W. Twaddle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twaddle, R.W., Ulm, S., Hinton, J. et al. Sclerochronological analysis of archaeological mollusc assemblages: methods, applications and future prospects. Archaeol Anthropol Sci 8, 359–379 (2016). https://doi.org/10.1007/s12520-015-0228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-015-0228-5

Keywords

Navigation