Skip to main content
Log in

Visualisation and permutation methods for archaeological data analysis

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Archaeologists routinely analyse bivariate data, whether in raw form or as output from principal components or discriminant function analyses. Often, the aim is to test hypotheses regarding the relationships between two or more groups of data. This paper demonstrates two techniques that are rarely used in archaeology yet, together, refine the presentation and testing of such relationships. Confidence ellipses provide statistically meaningful summaries of location and dispersion, and allow the analyst to judge the feasibility of hypotheses. Permutation tests provide analogues of parametric statistics but do not require the sampling or distributional assumptions that such tests demand; further to this, they have greater statistical power than non-parametric statistics. The value of these two methods in combination is illustrated via a case study of stable isotope ratio data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Box GEP (1953) Non-normality and tests on variances. Biometrika 40(3–4):318–335. doi:10.2307/2333350

    Article  Google Scholar 

  • Box GEP, Andersen SL (1955) Permutation theory in the derivation of robust criteria and the study of departures from assumption. J R Stat Soc Ser B 17(1):1–34

    Google Scholar 

  • Bradley JV (1960) Distribution-free statistical tests. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  • Brown MB, Forsythe AB (1974) Robust tests for equality of variances. J Am Stat Assoc 69(346):364–367. doi:10.2307/2285659

    Article  Google Scholar 

  • Chew V (1966) Confidence, prediction, and tolerance regions for multivariate normal distributions. J Am Stat Assoc 61(315):605. doi:10.2307/2282774

    Article  Google Scholar 

  • Chung JH, Fraser DAS (1958) Randomization tests for a multivariate 2-sample problem. J Am Stat Assoc 53(283):729–735. doi:10.2307/2282050

    Article  Google Scholar 

  • Cleveland WS (1985) The elements of graphing data. Wadsworth, Monterey

    Google Scholar 

  • Cobb GW (2007) The introductory statistics course: a Ptolemaic curriculum. Technol Innov Stat Educ 1:1–15

    Google Scholar 

  • Dobson SD (2005) Are the differences between Stw 431 (Australopithecus africanus) and AL 288–1 (A. afarensis) significant? J Hum Evol 49(1):143–154. doi:10.1016/j.jhevol.2005.04.001

    Article  Google Scholar 

  • Dwass M (1957) Modified randomization tests for nonparametric hypotheses. Ann Math Stat 28(1):181–187. doi:10.1214/aoms/1177707045

    Article  Google Scholar 

  • Edgington ES (1995) Randomization tests, 3rd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  • Ernst MD (2004) Permutation methods: A basis for exact inference. Stat Sci 19(4):676–685. doi:10.1214/088342304000000396

    Article  Google Scholar 

  • Evin A, Cucchi T, Cardini A, Vidarsdottir US, Larson G, Dobney K (2013) The long and winding road: identifying pig domestication through molar size and shape. J Archaeol Sci 40(1):735–743. doi:10.1016/j.jas.2012.08.005

    Article  Google Scholar 

  • Fisher RA (1919) A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Mon Not R Astron Soc 80(1):758–770

    Google Scholar 

  • Fisher RA (1935) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fisher RA (1936) "The coefficient of racial likeness" and the future of craniometry. J R Anthropol Inst 66:57–63. doi:10.2307/2844116

    Google Scholar 

  • Galton F (1886) Regression towards mediocrity in hereditary stature. J Anthropol Inst G B Irel 15:246–263

    Google Scholar 

  • Hammer O, Harper D (2006) Paleontological statistics. Blackwell Publishing, Oxford

    Google Scholar 

  • Harmon E (2009) Size and shape variation in the proximal femur of Australopithecus africanus. J Hum Evol 56(6):551–559. doi:10.1016/j.jhevol.2009.01.002

    Article  Google Scholar 

  • Hawks J (2011) No brain expansion in Australopithecus boisei. Am J Phys Anthropol 146(2):155–160. doi:10.1002/ajpa.21420

    Article  Google Scholar 

  • Higgins JJ (2004) An introduction to modem nonparametric statistics. Brooks and Cole, Pacific Grove

    Google Scholar 

  • Hotelling H (1931) The generalization of Student’s ratio. Ann Math Stat 2:360–378. doi:10.1214/aoms/1177732979

    Article  Google Scholar 

  • Jones H (1937) Some geometrical considerations in the general theory of fitting lines and planes. Metron 13:21–30

    Google Scholar 

  • Kempthorne O (1955) The randomization theory of experimental inference. J Am Stat Assoc 50(271):946–967. doi:10.2307/2281178

    Google Scholar 

  • Lehmann EL (1975) Nonparametrics: statistical methods based on ranks. Holden-Day, San Francisco

    Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, pp 278–292

    Google Scholar 

  • Lockwood CA, Richmond BG, Jungers WL, Kimbel WH (1996) Randomization procedures and sexual dimorphism in Australopithecus afarensis. J Hum Evol 31(6):537–548. doi:10.1006/jhev.1996.0078

    Article  Google Scholar 

  • Manly BFJ (1996) The statistical analysis of artefacts in graves: presence and absence data. J Archaeol Sci 23(4):473–484. doi:10.1006/jasc.1996.0045

    Article  Google Scholar 

  • Miller RG (1968) Jackknifing variances. Ann Math Stat 39(2):567–582. doi:10.1214/aoms/1177698418

    Article  Google Scholar 

  • O’Brien RG (1981) A simple test for variance effects in experimental designs. Psychol Bull 89(3):570–574. doi:10.1037/0033-2909.89.3.570

    Article  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(7–12):559–572

    Article  Google Scholar 

  • Pearson JA, Buitenhuis H, Hedges REM, Martin L, Russell N, Twiss KC (2007) New light on early caprine herding strategies from isotope analysis: a case study from Neolithic Anatolia. J Archaeol Sci 34(12):2170–2179. doi:10.1016/j.jas.2007.09.001

    Article  Google Scholar 

  • Pitman EJG (1937) Significance tests which may be applied to samples from any populations. Suppl J R Stat Soc 4(1):119–130. doi:10.2307/2984124

    Article  Google Scholar 

  • Pitman EJG (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30:391–421. doi:10.2307/2332656

    Article  Google Scholar 

  • Richmond BG, Jungers WL (1995) Size variation and sexual dimorphism in Australopithecus afarensis and living hominoids. J Hum Evol 29(3):229–245. doi:10.1006/jhev.1995.1058

    Article  Google Scholar 

  • Shewhart WA (1931) Economic control of quality of manufactured product. Van Nostrand, New York

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H.Freeman and Company, New York

    Google Scholar 

  • Tufte ER (1990) Envisioning information. Graphics Press, Cheshire

    Google Scholar 

  • Villmoare B (2005) Metric and non-metric randomization methods, geographic variation, and the single-species hypothesis for Asian and African Homo erectus. J Hum Evol 49(6):680–701. doi:10.1016/j.jhevol.2005.07.005

    Article  Google Scholar 

  • Wardop R (1994) Statistics: learning in the presence of variation. William C. Brown, Dubuque

    Google Scholar 

Download references

Acknowledgments

We would like to thank Ken Kahn of Oxford University Computing Services for bringing to our attention the article by Cobb (2007), and for valuable discussions of the pedagogical value of simulation methodologies. The comments of two AAS reviewers improved and clarified several aspects of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(M 2.74 kb)

ESM 2

(M 4.98 kb)

ESM 3

(M 5.72 kb)

Note on Supplementary Materials

The data used in the above analyses is provided as a supplementary spreadsheet, Data.xlsx. In addition, three appendices are provided that contain MATLAB code for drawing the ellipses (ellipses.m, Appendix 1), performing the one-tailed permutation tests on the standard deviations (SDs.m, Appendix 2), and performing the two-tailed permutation tests on means (means.m, Appendix 3). Once the data in Sheet 2 of Data.xlsx have been loaded into MATLAB as a matrix labelled ‘data’, the .m files can be added to the MATLAB search path and called by typing, for example:

>> run ellipses

In the command window (note that MATLAB is case sensitive). This will initiate the full procedure in each case, including plotting of the results.

ESM 4

(DOC 20 kb)

XLSX 5

(XLSX 9.22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grove, M., Pearson, J. Visualisation and permutation methods for archaeological data analysis. Archaeol Anthropol Sci 6, 319–328 (2014). https://doi.org/10.1007/s12520-013-0158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-013-0158-z

Keywords

Navigation