Skip to main content

Advertisement

Log in

Mountain summit detection with Deep Learning: evaluation and comparison with heuristic methods

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Landform detection and analysis from Digital Elevation Models (DEM) of the Earth has been boosted by the availability of high-quality public data sets. Current landform identification methods apply heuristic algorithms based on predefined landform features, fine tuned with parameters that may depend on the region of interest. In this paper, we investigate the use of Deep Learning (DL) models to identify mountain summits based on features learned from data examples. We train DL models with the coordinates of known summits found in public databases and apply the trained models to DEM data obtaining as output the coordinates of candidate summits. We introduce two formulations of summit recognition (as a classification or a segmentation task), describe the respective DL models, compare them with heuristic methods quantitatively, illustrate qualitatively their performances, and discuss the challenges of training DL methods for landform recognition with highly unbalanced and noisy data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://www.landserf.org/

  2. http://www.peakbagger.com/

  3. https://www.openstreetmap.org

  4. https://shop.swisstopo.admin.ch/en/products/landscape/names3D

  5. https://grass.osgeo.org/grass74/manuals/r.param.scale.html

  6. All the 3D terrain images in this Section are generated using the CesiumJS toolFootnote 7.

  7. https://cesiumjs.org/

References

  • Audebert N, Le Saux B, Lefèvre S (2016) Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Asian Conference on Computer Vision. Springer, pp 180–196

  • Bandura P (2016) Multi-scale landform-based identification of mountain peaks from DEMs in Slovakia

  • Beckham C, Pal C (2017) A step towards procedural terrain generation with GANs. arXiv:170703383

  • Chaudhry O, Mackaness W (2008) Creating mountains out of mole hills: automatic identification of hills and ranges using morphometric analysis. Transactions in GIS 12, https://doi.org/10.1111/j.1467-9671.2008.01116.x

  • Chen Z, Wang X, Xu Z et al (2016) Convolutional neural networks based DEM super resolution. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, pp 41

  • De Jong C, Barth T (2008) Challenges in hydrology of mountain ski resorts under changing climatic and human pressures. Surface Water Storage and Runoff: Modeling, In-Situ data and Remote Sensing Genève, ESA Proceedings

  • Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems

  • Deng Y, Wilson J (2008) Multi-scale and multi-criteria mapping of mountain peaks as fuzzy entities. Int J Geogr Inf Sci 22(2):205–218

    Article  Google Scholar 

  • Evans IS (2012) Geomorphometry and landform mapping: what is a landform? Geomorphology 137(1):94–106

    Article  Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos Trans Amer Geophys Union 81(48):583–585

    Article  Google Scholar 

  • Fedorov R, Camerada A, Fraternali P, Tagliasacchi M (2016) Estimating snow cover from publicly available images. IEEE Trans Multimed 18(6):1187–1200

    Article  Google Scholar 

  • Fisher P, Wood J (1998) What is a mountain? Or the Englishman who went up a Boolean geographical concept but realised it was fuzzy. Geography 83(3):247–256

    Google Scholar 

  • Fisher P, Wood J, Cheng T (2004) Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Trans Inst Br Geogr 29(1):106–128

    Article  Google Scholar 

  • Fisher P, Wood J, Cheng T (2005) Fuzziness and ambiguity in multi-scale analysis of landscape morphometry. In: Fuzzy modeling with spatial information for geographic problems. Springer, pp 209–232

  • Frėnay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst 25(5):845–869

    Article  Google Scholar 

  • Fry S (1987) Defining and sizing-up mountains. Summit

  • Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1440–1448

  • Graff LH, Usery EL (1993) Automated classification of generic terrain features in digital elevation models. Photogr Eng Remote Sens 59(9):1409–1417

    Google Scholar 

  • Guérin E, Digne J, Galin E, Peytavie A, Wolf C, Benes B, Martinez B (2017) Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans Graph (TOG) 36(6):228

    Article  Google Scholar 

  • Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48

    Article  Google Scholar 

  • Hastings J (2008) Automated conflation of digital gazetteer data. Int J Geogr Inf Sci 22(10):1109–1127

    Article  Google Scholar 

  • Hu X, Yuan Y (2016) Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sens 8(9):730

    Article  Google Scholar 

  • Jasiewicz J, Stepinski TF (2013) Geomorphons a pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147–156

    Article  Google Scholar 

  • Kirmse A, de Ferranti J (2017) Calculating the prominence and isolation of every mountain in the world. Prog Phys Geogr 41(6):788–802

    Article  Google Scholar 

  • Klingseisen B, Metternicht G, Paulus G (2008) Geomorphometric landscape analysis using a semi-automated GIS-approach. Environ Modell Softw 23(1):109–121

    Article  Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alpine Botany 127(1):1–15

    Article  Google Scholar 

  • LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  • LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems, pp 396–404

  • LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E et al (1995) Comparison of learning algorithms for handwritten digit recognition. In: International Conference on Artificial Neural Networks, Perth, Australia, vol 60, pp 53–60

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  Google Scholar 

  • Lei Ma XZYYGY, Yu L, Johnson BA (2019) Deep learning in remote sensing applications: a meta-analysis and review. Elsevier ISPRS J Photogr Remote Sens 152:166–177

    Article  Google Scholar 

  • Li W, Zhou B, Hsu CY, Li Y, Ren F (2017) Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection. In: Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery. ACM, pp 33–36

  • Li W, Hsu CY (2018) Automated terrain feature identification from remote sensing imagery: a deep learning approach, Int J Geogr Inf Sci, 1–24

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3431–3440

  • Mao X, Shen C, Yang YB (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in neural information processing systems, pp 2802–2810

  • Marmanis D, Adam F, Datcu M, Esch T, Stilla U (2015) Deep neural networks for above-ground detection in very high spatial resolution digital elevation models. ISPRS Annals of the Photogrammetry. Remote Sens Spatial Inf Sci 2(3):103

    Google Scholar 

  • Marmanis D, Wegner JD, Galliani S, Schindler K, Datcu M, Stilla U (2016) Semantic segmentation of aerial images with an ensemble of cnns. ISPRS Ann Photogr Remote Sens Spatial Inf Sci 3:473

    Article  Google Scholar 

  • Masouleh MK, Shah-Hosseini R (2019) A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery. Applied Geomatics:1–13. https://link.springer.com/article/10.1007/s12518-019-00285-4

  • Podobnikar T (2009) Method for determination of the mountain peaks. In: 12th AGILE International Conference on Geographic Information Science

  • Podobnikar T (2010) Mountain peaks determination supported with shapes analysis. Geographia Technica 5 (2010):111–119

    Google Scholar 

  • Podobnikar T (2012) Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sens 4 (3):784–809

    Article  Google Scholar 

  • Riley SJ, DeGloria S, Elliot R (1999) Index that quantifies topographic heterogeneity. Int J Sci 5 (1-4):23–27

    Google Scholar 

  • Romero BE, Clarke KC (2018) Exploring uncertainties in terrain feature extraction across multi-scale, multifeature, and multi-method approaches for variable terrain. Cartography and Geographic Information Science 45(5):381–399

    Article  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention – MICCAI, vol 2015. Springer International Publishing, Cham, pp 234–241

  • Saha K, Wells NA, Munro-Stasiuk M (2011) An object-oriented approach to automated landform mapping: a case study of drumlins. Comput Geosci 37(9):1324–1336

    Article  Google Scholar 

  • Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one 10(3):e0118432

    Article  Google Scholar 

  • Saljoughi BS, Hezarkhani A (2018) A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran. Appl Geomat 10(3):229–256

    Article  Google Scholar 

  • Sathyamoorthy D (2014) Computation of spatial significance of mountain objects extracted from multiscale digital elevation models. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, vol 20, pp 012044

  • Schillaci C, Braun A, Kropáček J (2016) 2.4. 2. Terrain analysis and landform recognition. In: Geomorphological techniques (online edition), British Society for Geomorphology

  • Smith B, Mark DM (2003) Do mountains exist? Towards an ontology of landforms. Environ Plann B: Plann Des 30(3):411–427

    Article  Google Scholar 

  • Smith MJ, Clark CD (2005) Methods for the visualization of digital elevation models for landform mapping. Earth Surf Process Landf 30(7):885–900

    Article  Google Scholar 

  • Torres RN, Frajberg D, Faternali P, Herrera S (2018a) Crowdsourcing landforms for open GIS enrichment. In: The IEEE International Conference on Data Science and Advanced Analytics (DSAA)

  • Torres RN, Fraternali P, Milani F, Frajberg D (2018b) A deep learning model for identifying mountain summits in digital elevation model data. In: 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, pp 212–217

  • Torres RN, Milani F, Fraternali P (2019) Algorithms for mountain peaks discovery: a comparison. In: The 34th ACM/SIGAPP Symposium on Applied Computing. ACM

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  • Wood J (1996) The geomorphological characterisation of digital elevation models

  • Wood J (2009) Geomorphometry in landserf. Dev Soil Sci 33:333–349

    Google Scholar 

  • Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European Conference on Computer Vision. Springer, pp 818–833

  • Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Article  Google Scholar 

  • Zhu XX, Tuia D, Mou L, Xia GS, Zhang L, Xu F, Fraundorfer F (2017) Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci Remote Sens Mag 5(4):8–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocio Nahime Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R.N., Fraternali, P., Milani, F. et al. Mountain summit detection with Deep Learning: evaluation and comparison with heuristic methods. Appl Geomat 12, 225–246 (2020). https://doi.org/10.1007/s12518-019-00295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-019-00295-2

Keywords

Navigation