Skip to main content

Advertisement

Log in

Impact cratering — fundamental process in geoscience and planetary science

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance in terrestrial — indeed, in planetary — evolution. About 170 impact structures have been discovered on Earth so far, and some more structures are considered to be of possible impact origin. One major extinction event, at the Cretaceous-Paleogene boundary, has been firmly linked with catastrophic impact, but whether other important extinction events in Earth history, including the so-called “Mother of All Mass Extinctions” at the Permian-Triassic boundary, were triggered by huge impact catastrophes is still hotly debated and a subject of ongoing research. There is a beneficial side to impact events as well, as some impact structures worldwide have been shown to contain significant (in some cases, world class) ore deposits, including the gold-uranium province of the Witwatersrand basin in South Africa, the enormous Ni and PGE deposits of the Sudbury structure in Canada, as well as important hydrocarbon resources, especially in North America. Impact cratering is not a process of the past, and it is mandatory to improve knowledge of the past-impact record on Earth to better constrain the probability of such events in the future. In addition, further improvement of our understanding of the physico-chemical and geological processes fundamental to the impact cratering process is required for reliable numerical modeling of the process, and also for the correlation of impact magnitude and environmental effects. Over the last few decades, impact cratering has steadily grown into an integrated discipline comprising most disciplines of the geosciences as well as planetary science, which has created positive spin-offs including the study of paleo-environments and paleo-climatology, or the important issue of life in extreme environments. And yet, in many parts of the world, the impact process is not yet part of the geoscience curriculum, and for this reason, it deserves to be actively promoted not only as a geoscientific discipline in its own right, but also as an important life-science discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison A D, Brumpton G R, Vallini D A, McNaughton N J, Davis D W, Kissin S A, Fralick P W and Hammond A L 2005 Discovery of distal ejecta from the 1850 Ma Sudbury impact event; Geology 33 193–196.

    Article  Google Scholar 

  • A’Hearn M F A, Belton M J S, Delamere W A, Kissel J, Klaasen K P, McFadden L A, Meech K J, Melosh H J, Schultz P H, Sunshine J M, Thomas P C, Veverka J, Yeomans D K, Baca M W, Busko I, Crockett C J, Collins S M, Desnoyer M, Eberhardy C A, Ernst C M, Farnham T L, Feaga L, Groussin O, Hampton D, Ipatov S I, Li J-Y, Lindler D, Lisse C M, Mastrodemos N, Owen W M, Richardson J E, Wellnitz D D and White R L 2005 Deep Impact: Excavating Comet Tempel 1; Science 310(5746) 258–264, doi: 10.1126/science.1118923.

    Article  Google Scholar 

  • Alvarez L W, Alvarez W, Asaro F and Michel H V 1980 Extraterrestrial cause for the Cretaceous-Tertiary extinction; Science 208 1095–1108.

    Article  Google Scholar 

  • Arenillas I, Arz J A, Grajales-Nishimura J M, Murillo-Muneton G, Alvarez W, Camargo-Zanoguera, Molina E and Rosales-Domínguez C 2006 Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence; Earth Planet. Sci. Lett. 249 241–257.

    Article  Google Scholar 

  • Arrhenius S 1903 Die Verbreitung des Lebens im Weltenraum; Die Umschau 7 481–485.

    Google Scholar 

  • Baegi M B 1996 Preliminary investigation of circular structures in eastern Tibisti, south-central Libya and their significance in radioactive mineral exploration; Technika Pszukiwań Geologicznych Geosynoptyka I Geotermia, No 2/96 35–43.

  • Baldwin R 1949 The Face of the Moon (Chicago: Univ. of Chicago) 239pp.

    Google Scholar 

  • Becker L, Poreda R J, Hunt A G, Bunch T E and Rampino M 2001 Impact event at the Permian-Triassic boundary, Evidence from extraterrestrial noble gases in fullerenes; Science 291 1530–1533.

    Article  Google Scholar 

  • Becker L, Poreda R J, Basu A R, Pope K O, Harrison T M, Nicholson C and Iasky R 2004 Bedout: A possible End-Permian impact crater offshore of northwestern Australia; Science 304 1469–1476.

    Article  Google Scholar 

  • Boslough M B, Crawford D A, Robinson A C and Trucano T G 1994 Watching for fireballs on Jupiter; EOS Trans. Amer. Geophys. Union 75(27) 305–310.

    Article  Google Scholar 

  • Brownlee D E, Tsou P, Anderson J D, Hanner M S, Newburn R L, Sekanina Z, Clark B C, Hörz F, Zolensky M E, Kissel J, McDonnell J A M, Sandford S A and Tuzzolino A J 2003 Stardust: Comet and interstellar dust sample return mission; J. Geophys. Res. 108 E10 doi: 10.1029/2003JE002087.

    Article  Google Scholar 

  • Cameron A G W and Ward W R 1976 The origin of the Moon (abstract) Lunar Science VII (Houston: Lunar and Planetary Institute) 120–122pp.

    Google Scholar 

  • Canup R M 2004a Dynamics of lunar formation; Annual Review of Astronomy and Astrophysics 42 441–475, doi: 10.1146/annurev.astro.41-082201.113457.

    Article  Google Scholar 

  • Canup RM 2004b Simulations of a late lunar-forming impact; Icarus 168 433–456, doi: 10.1016/j.icarus.2003.09.028.

    Article  Google Scholar 

  • Chadwick B, Claeys P, Simonson B M 2001 New evidence for a large Palaeoproterozoic impact: spherules in a dolomite layer in the Ketilidian orogen, South Greenland; J. Geol. Soc. London 158 331–340.

    Article  Google Scholar 

  • Chakrabarti R and Basu A R 2006 Trace element and isotopic evidence for Archean basement in the Lonar crater impact breccia, Deccan Volcanic Province; Earth Planet. Sci. Lett. 247 197–211.

    Article  Google Scholar 

  • Chapman C R 2004 The hazard of near-Earth asteroid impacts on earth; Earth Planet. Sci. Lett. 222 1–15.

    Article  Google Scholar 

  • Chapman C R and Morrison D 1994 Impacts on the earth by asteroids and comets: Assessing the hazard; Nature 367 33–40.

    Article  Google Scholar 

  • Cockell C S and Lee P 2002 The biology of impact craters — a review; Biol. Rev. 77 279–310.

    Article  Google Scholar 

  • Dietz R S 1947 Meteorite impact suggested by orientation of shatter cones at the Kentland, Indiana, disturbance; Science 105 42–43.

    Article  Google Scholar 

  • Dietz R S 1959 Shatter cones in cryptoexplosion structures (Meteorite impact); J. Geol. 67 496–505.

    Article  Google Scholar 

  • Dressler B O and Reimold W U 2004 Order or Chaos? Origin and mode of emplacement of breccias in floors of large impact breccias; Earth Sci. Rev. 67 1–60.

    Article  Google Scholar 

  • El-Baz F and Ghoneim E 2006 Veiled crater in the eastern Sahara; The Planetary Report XXVI No 4 July/August 2006 10–15.

  • Erwin D H 2001 Lessons from the past: Biotic recoveries from mass extinctions; Proc. Nat. Acad. Sci. 98(10) 5399–5403.

    Article  Google Scholar 

  • Farley K A, Montanari A, Shoemaker E M and Shoemaker C S 1998 Geochemical evidence for a comet shower in the late Eocene; Science 280 1250–1253.

    Article  Google Scholar 

  • French B M and Short N M (eds) 1968 Shock Metamorphism of Natural Materials (Baltimore: Mono Book Corp.) 644pp.

    Google Scholar 

  • French B M 1998 Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structure: LPI Contribution 954, Lunar and Planetary Institute, Houston, 120pp.

    Google Scholar 

  • Gibson R L and Reimold W U 2001 The Vredefort impact structure: South Africa (the scientific evidence and a two-day excursion guide); Memoir 92 Council for Geoscience Pretoria 110pp.

  • Gladman B, Dones L, Levison H F and Burns J A 2005 Impact seeding and reseeding in the inner solar system; Astrobiology 5 483–496.

    Article  Google Scholar 

  • Grajales-Nishimura J M, Cedillo-Pardo E, Rosales-Domínguez C, Morán-Zenteno D J, Alvarez W, Claeys P, Ruíz-Morales, García-Hernández J, Padilla-Avila P and Sánchez-Ríos A 2000 Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields; Geology 28 307–310.

    Article  Google Scholar 

  • Glikson A Y and Haines P W 2005 Shoemaker Memorial Issue on the Australian impact record; Australian J. Earth Sci. 52 798pp.

    Google Scholar 

  • Gohn G S, Koeberl C, Miller K G, Reimold W U, Cockell C S, Horton J W Jr, Sanford W E and Voytek M A 2006 Chesapeake Bay impact structure drilled; EOS Trans Amer. Geophys. Union 87 349–355.

    Google Scholar 

  • Gradstein F M, Ogg J G, Smith A G, Bleeker W and Lourens L J 2004 A new Geological Time Scale, with special reference to Precambrian and Neogene; Episodes 27 83–100.

    Google Scholar 

  • Grady M M, Hutchison R, McCall G J H and Rothery D A 1998 Meteorites: Flux with Time and Impact Effects; Geol. Soc. London, Special Publication 140 278pp.

  • Grieve R A F 2005 Economic natural resource deposits at terrestrial impact structures; Mineral Deposits and Earth Evolution (eds) McDonald I, Boyce A J, Butler I B, Harrington R J and Polya D A, Geol. Soc. London, Special Publication 248 1–29.

  • Grieve R A F and Masaitis V L 1994 The economic potential of terrestrial impact craters; Int. Geol. Rev. 36 399–420.

    Article  Google Scholar 

  • Grieve R A F 2006 Large-scale impacts and the evolution of the Earth’s crust: The early years; In: Processes on the Early Earth (eds) Reimold W U and Gibson R L, Geol. Soc. Amer. Special Paper 405 23–32.

  • Grieve R A F, Stöffler D and Langenhorst F 1996 Shock metamorphism in nature and experiment II. Significance in geoscience; Meteoritics Planet. Sci. 31 6–35.

    Google Scholar 

  • Grieve R A F, Cintala M J and Therriault A M 2006 Large-scale impacts and the evolution of the Earth’s crust: The early years; In: Processes on the Early Earth (eds) Reimold W U and Gibson R L, Geol. Soc. Amer. Special Paper 405 23–31.

  • Halliday A N 2006 The origin of the Earth — What’s new?; Elements 2 205–210.

    Google Scholar 

  • Hartmann W K and Davis D R 1975 Satellite-sized planetesimals and lunar origin; Icarus 24 504–515.

    Article  Google Scholar 

  • Hayward C L, Reimold W U, Gibson R L and Robb L J 2005 Gold mineralisation within the Witwatersrand Basin, South Africa: evidence for a modified placer origin, and the role of the Vredefort impact event; In: Mineral Deposits and Earth Evolution (eds) McDonald I, Boyce A J, Butler I B, Herrington R J and Polya D A, Geol. Soc. London, Special Publication 248 31–58.

  • Hildebrand A R, Penfield G T, Kring D A, Pilkington M, Carmargo-Zanoguera A, Jacobson S P and Boynton W V 1991 Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula Mexico; Geology 19 867–871.

    Article  Google Scholar 

  • Huffman A R and Reimold W U 1996 Experimental constraints on shock-induced microstructures in naturally deformed silicates; Tectonophys. 256 165–217.

    Article  Google Scholar 

  • Hofmann A, Reimold W U and Koeberl C 2006 Archean spherule layers from the Barberton Mountain Land: A critical assessment; In: Processes on the Early Earth (eds) Reimold W U and Gibson R L, Geol. Soc. Amer. Special Paper 405 33–56.

  • Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen Z and Shi G R 2001 End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle; Geology 29 815–818.

    Article  Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T and Stüben D 2004 More evidence that the Chicxulub impact predates the K-T boundary mass extinction; Meteoritics Planet. Sci. 39 1127–1144.

    Google Scholar 

  • Kenkmann T, Hornemann U and Stöffler D 2000 Experimental generation of shock induced pseudotachylites along lithological interfaces; Meteoritics Planet. Sci. 35 1275–1290.

    Google Scholar 

  • Koeberl C 1997 Impact cratering: the mineralogical and geochemical evidence; Oklahoma Geological Survey Circular 100 30–54.

    Google Scholar 

  • Koeberl C 2002 Mineralogical and geochemical aspects of impact craters; Min. Mag. 66 745–768.

    Article  Google Scholar 

  • Koeberl C 2004 Remote sensing studies of impact craters: how to be sure?; Comptes Rendus Geoscience 336 959–961.

    Article  Google Scholar 

  • Koeberl C 2006 The record of impact processes on the early Earth — A review of the first 2.5 billion years; In: Processes on the Early Earth (eds) Reimold W U and Gibson R L (Boulder Colorado: Geological Society of America) Special Paper 405 1–22pp.

    Google Scholar 

  • Koeberl C, Reimold W U and Boer R H 1993 Geochemistry and mineralogy of Early Archean spherule beds, Barberton Mountain Land, South Africa: Evidence for origin by impact doubtful; Earth Planet. Sci. Lett. 119 441–452.

    Article  Google Scholar 

  • Koeberl C and MacLeod (eds) 2002 Catastrophic Events and Mass Extinctions: Impacts and Beyond (Boulder Colorado: Geological Society of America) Special Paper 356 746pp.

    Google Scholar 

  • Koeberl C, Gilmour I, Reimold W U, Claeys P and Ivanov B 2002 Comment on “End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle” by Kaiho K et al (Geology, 29, 815–818, 2001); Geology 30 855–856. (ICRG No. 31).

    Article  Google Scholar 

  • Koeberl C, Reimold W U and Plescia J 2005 BP and Oasis impact structures, Libya: remote sensing and field studies; In: Impact Tectonics (eds) Koeberl C and Henkel H (Berlin-Heidelberg-New York: Springer-Verlag) Impact Studies Series 8 161–190.

    Chapter  Google Scholar 

  • Kring D A, Horton J W Jr and Cannon W F 2006 Discovery of the Sudbury impact layer in Michigan, USA (abstract); Meteoritics Planet. Sci. 41 (Suppl.) A100p.

  • Kumar P S 2005 Structural effects of meteorite impact on basalt: Evidence from Lonar crater; India; J. Geophys. Res. 110, B12402, doi:10.1029/2005JB003662.

  • Langenhorst F and Deutsch A 1998 Minerals in terrestrial impact structures and their characteristic features; In: Mineral matter in Space, mantle, Ocean Floor, Biosphere, Environmental Management and Jewellery (ed.) Marfunin A S (Berlin-Heidelberg: Springer-Verlag) Advanced Mineralogy 3 95–119.

    Google Scholar 

  • Langenhorst F, Poirier J-P, Deutsch A and Hornemann U 2002 Experimental approach to generate shock veins in single crystal olivine by shear heating; Meteoritics Planet. Sci. 37 1541–1553.

    Google Scholar 

  • Langenhorst F, Kyte F T and Retallack G J 2005 Reexamination of quartz grains from the Permian-Triassic boundary section at Graphite Peak Antarctica; Lunar and Planetary Science Conference XXXVI, Lunar and Planetary Institute, Houston CD-ROM abstract No. 2358, 2pp.

  • MacLeod N, Rawson P F, Forey P L, Banner F T, Boughager-Fadel M K, Brown P R, Burnett J A, Chambers P, Culver S, Evans S E, Jeffery C, Kaminski M A, Lord A R, Milner A C, Milner A R, Morris N, Owen E, Rosen B R, Smith A B, Taylor P D, Urquhart E and Young J R 1997 The Cretaceous-Tertiary biotic transition; J. Geol. Soc. 154 265–292.

    Google Scholar 

  • Maré L P, Eriksson P G and Améglio L 2006 A paleomagnetic study of the lower part of the Palaeoproterozoic Waterberg Group, South Africa; J. Afr. Earth. Sci. 44 21–36.

    Article  Google Scholar 

  • Mark K 1987 Meteorite Craters (Tucson: The University of Arizona Press) 288 pp.

    Google Scholar 

  • Masaitis V L 1998 Diamond-bearing impactites of the Popigai astrobleme (in Russian) (Moscow: VSEGEI Press) 178pp.

    Google Scholar 

  • McDonald I 2002 Clearwater East impact structure: a reinterpretation of the projectile using new platinum-group element data from meteorites; Meteoritics Planet. Sci. 37 459–464.

    Google Scholar 

  • McKay D S, Gibson E K Jr, Thomas-Keptra K L, Vali H, Romanek C S, Clemett S J, Chillier X D F, Maechling C R and Zare R N 1996 Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001; Science 273 924–930.

    Article  Google Scholar 

  • Melosh H J 1989 Impact Cratering: A Geological Process (Oxford: Oxford Univ. Press) 245pp.

    Google Scholar 

  • Montanari A and Koeberl C 2000 Impact Stratigraphy — The Italian Record. Lecture Notes in Earth Sciences 93 (Heidelberg-Berlin: Springer-Verlag) 364 pp.

    Google Scholar 

  • Morishima R and Watanabe S 2004 Co-accretion of the Earth-Moon system after the giant impact: reduction of the total angular momentum by lunar impact ejecta; Icarus 168 60–79.

    Article  Google Scholar 

  • Mory A J, Iasky R P, Glikson A Y and Pirajno F 2000 Woodleigh, Carnarvon basin, Western Australia: A new 120 km diameter impact structure; Earth Planet Sci. Lett. 177 119–128.

    Article  Google Scholar 

  • Müller R D, Goncharov A and Kritski A 2005 Geophysical evaluation of the enigmatic Bedout basement high, offshore northwestern Australia; Earth Planet Sci. Lett. 237 264–284.

    Article  Google Scholar 

  • Müller-Mohr V 1992 Breccias in the basement of a deeply eroded impact structure Sudbury, Canada; Tectonophysics 216 219–226.

    Article  Google Scholar 

  • Muñoz-Espadas M-J, Martinez-Frias J and Lunar R 2003 Main geochemical signatures related to meteoritic impacts in terrestrial rocks: a review; In: Impact Markers in the Stratigraphic Record (eds) Koeberl C and Martinez-Ruiz C (Heidelberg-Berlin: Springer-Verlag) Impact Studies 3 65–90pp.

    Google Scholar 

  • Norris R and Stootman F (eds) 2004 “Bioastronomy 2002: Life Among the Stars” (San Francisco: Astronomical Society of the Pacific) 299–304.

    Google Scholar 

  • Oreskes N (ed.) 2003 Plate Tectonics: An Insider’s History of the Modern Theory of the Earth (Boulder, Colorado: Westview Press) 448pp.

    Google Scholar 

  • Osae S, Misra C, Koeberl C, Sengupta D and Ghosh S 2005 Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry; Meteoritics Planet. Sci. 40 1473–1492.

    Google Scholar 

  • Paillou P H, Rosenqvist A, Malézieux J-M, Reynard B, Farr T and Heggy E 2003 Discovery of a double impact crater in Libya: the astrobleme of Arkenu; Comptes Rendus Acad. Sci. Paris Geosci. 335 1059–1069.

    Article  Google Scholar 

  • Palme H 1982 Identification of projectiles of large terrestrial impact craters and some implications for the interpretation of Ir-rich Cretaceous/Tertiary boundary layers; In: Geological Implications of Impacts of Large Asteroids and Comets on Earth (eds) Silver L T and Schultz P H, Geol. Soc. Amer. Special Paper 190 223–233.

  • Pati J K 2005 The Dhala structure, Bundelkhand craton, Central India — a new large Paleoproterozoic impact structure (abstract); Meteoritics Planet. Sci. 40(Suppl.) p. A121.

    Google Scholar 

  • Pati J K, Reimold W U and Arvind 2006a Ballen quartz in impact melt rock from the Dhala impact structure, Bundelkhand Craton, Central India, (abstract) ‘ESLAB-40: First International Conference on Impact Cratering in the Solar System’, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Pati J K, Nadeem M, Kundu R, Bhusan R and Reimold W U 2006b Monomict impact breccia from Dhala structure, Archean Bundelkhand Craton, Central India: Macro-and mesoscopic impact-induced deformation (abstract); Meteoritics Planet. Sci. 41 (Suppl.) A139pp.

  • Rampino M R 1999 Impact crises, mass extinctions, and galactic dynamics: The case for a unified theory; In: Large Meteorite Impacts and Planetary Evolution II (eds) Dressler B O and Sharpton V L, Geol. Soc. Amer. Special Paper 339 241–248.

  • Reimold W U 1995 Pseudotachylites in impact structures — generation by friction melting and shock brecciation? A review and discussion; Earth Sci. Rev. 39 247–265.

    Article  Google Scholar 

  • Reimold W U 1998 Exogenic and endogenic breccias: a discussion of major problematic; Earth Sci. Rev. 43 25–47.

    Article  Google Scholar 

  • Reimold W U 2006 Impact structures in South Africa; In: The Geology of South Africa (eds) Johnson M R, Anhaeusser C R and Thomas R J, Geol. Soc. S. Africa and Council for Geoscience Pretoria, Chapter 30, in press.

  • Reimold W U and Koeberl C 2000 Critical comment on: “A J Mory et al, Woodleigh, Carbarvon basin, Western Australia: A new 120 km diameter impact structure.” Earth Planet. Sci. Lett. 184 353–357.

    Article  Google Scholar 

  • Reimold W U and Gibson R L 2005a A Meteorite Impact — the Danger from Space and South Africa’s Mega-Impact, the Vredefort Structure (Johannesburg, South Africa: Chris van Rensburg Publ. (Pty) Limited) 319pp.

    Google Scholar 

  • Reimold W U and Gibson R L 2005b “Pseudotachylites” in large impact structures; In: Impact Tectonics (eds) Koeberl C and Henkel H (Berlin-Heidelberg-New York: Springer-Verlag) Impact Studies Series 8 1–53pp.

    Google Scholar 

  • Reimold W U, Trepmann C and Simonson B 2006 Discussion — Impact origin of the Ramgarh Structure, Rajasthan: Some new evidences by Sisodia et al 2006; J. Geol. Soc. India 68 561–563.

    Google Scholar 

  • Reimold W U, Koeberl C, Gibson R L and Dressler B O 2005 Economic mineral deposits in impact structures: a review; Impact Tectonics (eds) Koeberl C and Henkel H (Heidelberg-Berlin: Springer-Verlag) 479–552.

    Chapter  Google Scholar 

  • Renne P R, Reimold W U, Koeberl C, Hough R and Claeys P 2002 Critical comment on: “K-Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure Southern Carnarvon Basin, Western Australia” (eds) Uysal I T et al, Earth Planet. Sci. Lett. 201 247–252.

  • Renne P R, Melosh H J, Farley K A, Reimold W U, Koeberl C, Rampino M R, Kelly S P and Ivanov B A 2004 Is Bedout an impact crater? Take 2; Science 306 610–611.

    Article  Google Scholar 

  • Retallack G J, Seyedolali A, Krull E S, Holser W T, Ambers C A and Kyte F T 1998 Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia; Geology 26 979–982.

    Article  Google Scholar 

  • Schopf J W 2006 The first billion years: When did life emerge? Elements 2 229–233.

    Google Scholar 

  • Schubert G, Turcotte D L and Olson P 2001 Mantle Convection in the Earth and Planets (Cambridge: Cambridge University Press) 940pp.

    Google Scholar 

  • Schulte P, Speijer R, Mai H and Kontny A 2006 The Cretaceous-Paleogene (K/P) boundary at Brazos (Texas): sequence stratigraphy, depositional events and the Chicxulub impact Sediment; Geology 184 77–109.

    Google Scholar 

  • Shoemaker E M 1963 Impact mechanics at Meteor Crater, Arizona; Moon, Meteorites, and Comets (eds) Middlehurst B M and Kuiper G P (Chicago: University of Chicago) 301–336pp.

    Google Scholar 

  • Simonson B M and Glass B P 2004 Spherule layers — records of ancient impacts; Annu. Rev. Earth Planet. Sci. 32 329–361.

    Article  Google Scholar 

  • Sisodia M S, Lashkari G and Bhandari N 2006a Impact origin of the Ramgarh Structure, Rajasthan: Some new evidences; J. Geol. Soc. India 67 423–431.

    Google Scholar 

  • Sisodia M S, Lashkari G and Bhandari N 2006b Reply [to Discussion of Reimold et al 2006]; J. Geol. Soc. India 68 563–565.

    Google Scholar 

  • Smit J and Hertogen J 1980 An extraterrestrial event at the Cretaceous-Tertiary boundary; Nature 285 198–200.

    Article  Google Scholar 

  • Smit J 1999 The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta; Annu. Rev. Earth Planet. Sci. 27 75–113.

    Article  Google Scholar 

  • Son T H and Koeberl C 2005 Chemical variation within fragments of Australasian tekite; Meteoritics Planet. Sci. 40 805–815.

    Google Scholar 

  • Spray J G 1998 Localized shock-and friction-induced melting in response to hypervelocity impact; In: Meteorites: Flux with Time and Impact Effects (eds) Grady M M, Hutchison R, McCall G J H and Rothery D A, Geol. Soc. London Special Publication 140 195–204.

  • Stöffler D 1972 Deformation and transformation of rockforming minerals by natural and experimental shock processes. I. Behaviour of minerals under shock compression; Fortschritte der Mineralogie 49 50–113.

    Google Scholar 

  • Stöffler D and Langenhorst F 1994 Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory; Meteoritics 29 155–181.

    Google Scholar 

  • Stöffler D and Reimold W U 2006 Geologic setting, properties, and classification of terrestrial impact formations; In: Papers to First International Conference on Impact Cratering in the Solar System, 8–12 May 2006, Noordwijk Netherlands CD-ROM, ESLAB-40, WPP-266, 6pp.

  • Stöffler D, Keil K and Scott E R D 1991 Shock metamorphism of ordinary chondrites; Geochim. Cosmochim. Acta 55 3845–3867.

    Article  Google Scholar 

  • Stöffler D, Artemieva N A, Ivanov B A, Hecht L, Kenkmann T, Schmitt R T, Tagle R A and Wittmann A 2004 Origin and emplacement of the impact formations at Chicxulub, Mexico, as revelaed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling; Meteoritics Planet. Sci. 39 1035–1067.

    Article  Google Scholar 

  • Stöffler D, Meyer C, Fritz J, Horneck G, Möller R, Cockell C, Ott S, de Vera J P, Hornemann U and Artemieva N A 2006 Impact experiments in support of “Lithopanspermia”; The route from Mars to Earth; 37 th Lunar Planet. Sci. Conf., Houston 1551 2pp.

  • Tagle R A and Claeys P 2005 An Ordinary Chondrite Impactor for the Popigai Crater, Siberia; Geochim. Cosmochim. Acta 69 2877–2889.

    Article  Google Scholar 

  • Taylor S R 1992 Solar System Evolution: A New Perspective (New York: Cambridge Univ.) 307pp.

    Google Scholar 

  • Treiman A H 1998 The history of Allan Hills 84001 revisited: Multiple shock events; Meteoritics Planet. Sci. 33 753–764.

    Google Scholar 

  • Urrutia-Fucugauchi F, Morgan J, Stöffler D and Claeys P 2004 The Chicxulub Scientific Drilling Project (CSDP) Meteoritics Planet. Sci. 39 787–790.

    Google Scholar 

  • Uysal I T, Golding S D, Glikson A Y, Mory A J and Glikson M 2001 K-Ar evidence from illitic clays of a late Devomian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon basin, Western Australia; Earth Planet. Sci. Lett. 192 281–289.

    Article  Google Scholar 

  • Wegener A 1915 Braunschweig: Die Entstehung der Kontinente und Ozeane (Braunschweig: Vieweg-Verlag) 94pp.

    Google Scholar 

  • Wegener A 1921 Die Entstehung der Mondkrater (Braunschweig: Vieweg-Verlag) 48pp.

    Google Scholar 

  • Westall F, de Vries S T, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzoud J-N, Marchesini D and Severine A 2006 The 3.466 Ga, ‘Kitty’s Gap Chert’, an early Archean microbial ecosystem; In: Processes on the Early Earth (eds) Reimold W U and Gibson R L (Colorado: GSA) Special Paper 405 105–131.

    Google Scholar 

  • Wieland F, Reimold W U and Gibson R L 2006 New observations on shatter cones in the Vredefort impact structure, South Africa, and an evaluation of current models for shatter cone formation; Meteoritics Planet. Sci. 41 (in press).

  • Wilhelms D E 1987 The Geologic History of the Moon; US Geological Survey Professional Paper 1348 302pp and plates.

  • Wu S 1987 The Duolon impact crater, China: Abstracts; International Geological Correlation Project 199 Meeting March 3–4, 1987, Beijing, China, 1p.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, J.K., Reimold, W.U. Impact cratering — fundamental process in geoscience and planetary science. J Earth Syst Sci 116, 81–98 (2007). https://doi.org/10.1007/s12040-007-0009-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-007-0009-3

Keywords

Navigation