Skip to main content
Log in

Geochemical insight into granite hosted U-rich fluorite, Gabal El-Erediya area, Central Eastern Desert, Egypt: REE geochemical and fluid inclusion aspects

  • S. I. SCJGE-1 2019
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The A-type younger granite pluton and associated fluorite of Gabal El-Erediya, Eastern Desert, Egypt, have been investigated geologically and geochemically. Granites are genetically high-K-calc-alkaline syenogranites that show a high LREE/HREE ratio with noticeable negative Eu anomaly. Additionally, the visible tetrad pattern and negative Eu anomaly of the investigated granites point to fractional crystallization and fluid-melt interactions during the last stage of magmatic differentiation. They were probably generated within an extensional environment and were crystallized at temperature ~ 740 °C and pressure ~ 1.9 kbars. Two types of U-rich fluorite mineralizations were recorded including colorless and violet types. The hydrothermal fluids forming fluorites were related to late-stage differentiation of the felsic magma with a crystallization temperature ranging from 118 to 336 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel Warith A, Michalik M, Ali BH (2010) Fluorine enriched granites: chemical characterization and relation to uranium mineralization. J Appl Sci Res 6:299–323

    Google Scholar 

  • Abu Dief A (1993) The relation between the uranium mineralization and tectonics in some Pan-African granite, west of Safaga, Eastern Desert, Egypt. (Ph.D. Thesis). Assuit University

  • Aleshin A, Velichkin V, Cuney M, et al (2002) Ontogeny and typomorphic features of uranium mineralization at Mo-U deposits of the Streltsovskaya caldera (Transbaikalia, Russia). In: In Proceedings of the international workshop’Uranium deposits: from their genesis to their environmental aspects. pp 29–32

  • Aleshin A, Velichkin V, Krylova T (2007) Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum-uranium ore field: new mineralogical, geochemical, and physicochemical. Geol Ore Depos 49:392–412. https://doi.org/10.1134/S1075701507050054

    Article  Google Scholar 

  • Bakhit FS, El Kassas IA (1989) Distribution and orientation of radioactive veins in the El Erediya-El Missikat area, Central Eastern Desert, Egypt. Int J Remote Sens 10:565–581. https://doi.org/10.1080/01431168908903893

    Article  Google Scholar 

  • Ballouard C, Poujol M, Boulvais P et al (2015) Is the Nb-Ta fractionation a marker of an interaction with fluids in peraluminous granites? In: GA2015: 13th Biennial meeting. Nancy, France, pp 675–678

  • Barker F (1979) Trondhjemite: Definition, environment and hypotheses of origin. Developments in Petrology. Elsevier, pp 1–12

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Springer-Verlag

  • Beane RE (1983) The magmatic-meteoric transition. Geotherm Resour Counc Spec Rep 13:245–253

    Google Scholar 

  • Beyth M, Stern RJ, Altherr R, Kröner A (1994) The Late Precambrian Timna igneous complex, southern Israel: evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. LITHOS 31:103–124. https://doi.org/10.1016/0024-4937(94)90003-5

    Article  Google Scholar 

  • Blasy M, Baroudy AF, Kharbish SM (2001) Geochemical characteristics of Wadi Tarr albitite, Southeastern Sinai, Egypt. Egypt J Geol 42:767–780

    Google Scholar 

  • Blevin PL (2003) Metallogeny of granitic rocks. In: Magmas to mineralisation: the Ishihara Symposium, vol 14, Blevin P, Jones M, Chappell B edn. Ishihara Symp GEMOC, Macquarie Univ, p 155

  • Chabiron A, Michel AE, Ae C, Poty B (2003) Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia). Springer 38:127–140. https://doi.org/10.1007/s00126-002-0289-0

    Article  Google Scholar 

  • Chappell BW, Bryant CJ, Wyborn D et al (1998) High- and low-temperature I-type granites. Resour Geol 48:225–235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x

    Article  Google Scholar 

  • Charoy B, Raimbault L (1994) Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. J Petrol 35:919–962. https://doi.org/10.1093/petrology/35.4.919

    Article  Google Scholar 

  • Chen B, Jahn BM (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. J Asian Earth Sci 23:691–703. https://doi.org/10.1016/S1367-9120(03)00118-4

    Article  Google Scholar 

  • Chen YW, Bi XW, Hu RZ, Dong SH (2012) Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong province, China: Implications for U mineralization. Lithos 150:119–134. https://doi.org/10.1016/j.lithos.2012.06.025

    Article  Google Scholar 

  • Chen B, Ma X, Wang Z (2014) Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. J Asian Earth Sci 93:301–314. https://doi.org/10.1016/j.jseaes.2014.07.022

    Article  Google Scholar 

  • Christiansen EH, Lee DE (1986) Fluorine and chlorine in granitoids from the Basin and Range province, western United States. Econ Geol 81:1484–1494. https://doi.org/10.2113/gsecongeo.81.6.1484

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

    Article  Google Scholar 

  • Condie KC (1973) Archean magmatism and crustal thickening. Bull Geol Soc Am 84:2981–2992. https://doi.org/10.1130/0016-7606(1973)84<2981:AMACT>2.0.CO;2

    Article  Google Scholar 

  • Cuney M (2009) The extreme diversity of uranium deposits. Mineral Deposita 44:3–9. https://doi.org/10.1007/s00126-008-0223-1

    Article  Google Scholar 

  • Cuney M (2014) Felsic magmatism and uranium deposits. Bull Soc Geol Fr 185:75–92. https://doi.org/10.2113/gssgfbull.185.2.75

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Article  Google Scholar 

  • El Bouseily AM, El Sokkary AA (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem Geol 16:207–219. https://doi.org/10.1016/0009-2541(75)90029-7

    Article  Google Scholar 

  • El-Feky MG (2011) Mineralogical, REE-geochemical and fluid inclusion studies on some uranium occurrences, Gabal Gattar, Northeastern Desert, Egypt. Chin J Geochem 30:430–443. https://doi.org/10.1007/s11631-011-0529-z

    Article  Google Scholar 

  • El-Sayed MM, Nisr SA (1999) Petrogenesis and evolution of the Dineibit El-Qulieb hyperaluminous leucogranite, Southeastern Desert, Egypt: petrological and geochemical constraints. J Afr Earth Sci 28:703–720. https://doi.org/10.1016/S0899-5362(99)00040-8

    Article  Google Scholar 

  • Elwan W, Azzaz SA, Balasi MR, Amer O (2019) Petrogenesis of Maktali fractionated calc-alkaline younger granitoids, Central Eastern Desert, Egypt. Arab J Geosci 12:1–17. https://doi.org/10.1007/s12517-019-4559-x

    Article  Google Scholar 

  • Espinoza F, Morata D, Pelleter E, Maury RC, Suárez M, Lagabrielle Y, Polvé M, Bellon H, Cotten J, de la Cruz R, Guivel C (2005) Petrogenesis of the Eocene and Mio-Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: evidence for the participation of two slab windows. Lithos 82:315–343. https://doi.org/10.1016/j.lithos.2004.09.024

    Article  Google Scholar 

  • Eyal M, Litvinovsky B, Jahn BM, Zanvilevich A, Katzir Y (2010) Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol 269:153–179. https://doi.org/10.1016/j.chemgeo.2009.09.010

    Article  Google Scholar 

  • Fayek M, Horita J, Ripley EM (2011) The oxygen isotopic composition of uranium minerals: a review. Ore Geol Rev 41:1–21

    Article  Google Scholar 

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Ghoneim MM, Gawad AA (2018) Vein-type uranium mineralization in the Eastern Desert of Egypt. News Ural State Min Univ 1:33–38

    Article  Google Scholar 

  • Hassan MA, Hashad AH, Said R (1990) The geology of Egypt Precambrian of Egypt. Routledge

  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48:2341–2357. https://doi.org/10.1093/petrology/egm062

    Article  Google Scholar 

  • Hill GT, Campbell AR, Kyle PR (2000) Geochemistry of southwestern New Mexico fluorite occurrences implications for precious metals exploration in fluorite-bearing systems. J Geochem Explor 68:1–20. https://doi.org/10.1016/S0375-6742(99)00047-3

    Article  Google Scholar 

  • Honour VC, Goodenough KM, Shaw RA, Gabudianu I, Hirtopanu P (2018) REE mineralisation within the Ditrău Alkaline Complex, Romania: interplay of magmatic and hydrothermal processes. Lithos 314–315:360–381. https://doi.org/10.1016/j.lithos.2018.05.029

    Article  Google Scholar 

  • Huebner J, Sato M (1970) The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. Am Mineral J Earth Planet Mater 55:934–952

    Google Scholar 

  • IAEA (2012) World distribution of uranium deposits (UDEPO) with uranium deposit classification. Int At Energy Agency 117.

  • Ibrahim ME, Saleh GM, Abd El-Naby HH (2001) Uranium mineralization in the two mica granite of Gabal Ribdab area, South Eastern Desert, Egypt. Appl Radiat Isot 55:861–872. https://doi.org/10.1016/s0969-8043(01)00122-1

    Article  Google Scholar 

  • Ibrahim T, Cuney M, El Agami N et al (2004) Alteration processes and elements mobilIty in el missikat granite. In: Intern. Conf On Geochemistry. Alex.Univ, Egypt, pp 465–481

  • Ibrahim M, Watanabe K, Saleh G, Ibrahim W (2015) Abu Rusheid lamprophyre dikes, South Eastern Desert, Egypt: as physical-chemical traps for. Arab J Geosci 8:9261–9270. https://doi.org/10.1007/s12517-015-1882-8

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508. https://doi.org/10.1016/S0016-7037(99)00027-7

    Article  Google Scholar 

  • Ismael IS, Kharbish S (2013) Removing of as (V) from aqueous solution using natural and pretreated glauconite and halloysite. Carpathian J Earth Environ Sci 8:187–198

    Google Scholar 

  • Jiang SY, Wang RC, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth 30:1020–1029. https://doi.org/10.1016/j.pce.2004.11.004

    Article  Google Scholar 

  • Johannes W, Holtz F (2012) Petrogenesis and experimental petrology of granitic rocks. Springer Science & Business Media

  • Jung S, Pfänder JA (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur J Mineral 19:859–870. https://doi.org/10.1127/0935-1221/2007/0019-1774

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150. https://doi.org/10.1007/BF00306474

    Article  Google Scholar 

  • Kharbish S (2010) Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro-diorite suite, central Eastern Desert, Egypt. Chem Erde 70:257–266. https://doi.org/10.1016/j.chemer.2009.12.007

    Article  Google Scholar 

  • Kharbish S (2020) Mineral chemistry, geochemistry, Raman spectroscopy and geotectonic significance of Neoproterozoic ophiolitic peridotites and pyroxenites from Kab Amiri district, central Eastern Desert, Egypt. Front Sci Res Technol 0:0–0. https://doi.org/10.21608/fsrt.2020.19309.1002

    Article  Google Scholar 

  • Kharbish S, Elawadi A (2018) Geochemistry and geotectonic significance of neoproterozoic ophiolitic peridotites and pyroxenites: KAB AMIRI, EASTERN DESERT, EGYPT Mineralogy and physico-chemical properties of Wadi Badaa clays (Cairo-Suez district, Egypt): a prospective resource for th. ACTA Univ MATTHIAE BELII Ser Environ Manag XX 1:38–45. 10.24040/actaem.2018.20.1.38-45

  • Kharbish S, El-Awady A (2019) Geochemical, mineralogical and petrogenetic studies of the calc-alkaline younger gabbros, Sinai of Egypt with a special emphasis on the role of hydrous fluids. J Afr Earth Sci 155:13–31. https://doi.org/10.1016/j.jafrearsci.2019.04.002

    Article  Google Scholar 

  • Kharbish S, Raslan MF, Raslan MF et al (2021) Occurrence of polymetallic mineralized pegmatite at Wadi El Sheih granite, Central Eastern Desert, Egypt. IOSR J Appl Geol Geophys 9:1–18. https://doi.org/10.9790/0990-0902010118

    Article  Google Scholar 

  • Kovalenko VI (1971) Topaz-bearing quartz keratophyre (ongonite), a new variety of subvolcanic igneous vein rock. Trans USSR Acad Sci, Earth Sci Sec 199:132–135

    Google Scholar 

  • Lambert I, Jaireth S, McKay A, Miezitis Y (2005) Why Australia has so much uranium. AUSGEO news 80:7–10

    Google Scholar 

  • Lui ZY, Lui HX (2009) The simulation test of granite uranium mineralization. Earth Sci Front 16:99–113

    Google Scholar 

  • Maged A, Ismael ISIS, Kharbish S et al (2020a) Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: intercalation, characterization, and sorption studies. Environ Sci Pollut Res 27:1870–1887. https://doi.org/10.1007/s11356-019-06845-w

    Article  Google Scholar 

  • Maged A, Kharbish S, Ismael ISIS, Bhatnagar A (2020b) Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ Sci Pollut Res 27:1–18. https://doi.org/10.1007/s11356-020-09267-1

    Article  Google Scholar 

  • Mahdy NM (2011) Mineralogical studies and mineral chemistry of some radioactive mineralizations in Gabal Gattar area, Northern Eastern Desert. Ain Shams University, Egypt

  • Mahdy NM, Shalaby MH, Helmy HM, Osman AF, el Sawey ESH, Zeid EKA (2014) Trace and REE element geochemistry of fluorite and its relation to uranium mineralizations, Gabal Gattar Area, Northern Eastern Desert, Egypt. Arab J Geosci 7:2573–2589. https://doi.org/10.1007/s12517-013-0933-2

    Article  Google Scholar 

  • Mahdy NM, El Kalioubi BA, Wohlgemuth-Ueberwasser CC et al (2015) Petrogenesis of U- and Mo-bearing A2-type granite of the Gattar batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt: evidence for the favorability of host rocks for the origin of associated ore deposits. Ore Geol Rev 71:57–81. https://doi.org/10.1016/j.oregeorev.2015.05.001

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Article  Google Scholar 

  • Manning DAC (1981) Contributions to mineralogy and petrology the effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb

  • Mohamed FH, El-Sayed MM (2008) Post-orogenic and anorogenic A-type fluorite-bearing granitoids, Eastern Desert, Egypt: petrogenetic and geotectonic implications. Chem Erde 68:431–450. https://doi.org/10.1016/j.chemer.2007.01.001

    Article  Google Scholar 

  • Möller P, Parekh PP, Schneider HJ (1976) The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis. Mineral Deposita 11:111–116. https://doi.org/10.1007/BF00203098

    Article  Google Scholar 

  • Moussa EM (2006) Post collisional a-type granites at Al Missikat and Al Aradiya, Central Eastern Desert, Egypt: geochemical characteristics and REE petrogenetic modeling. In: In Proceedings of the 7th International Conference on Geochemistry. Alex. University, Egypt, pp 1–16

  • Myint A (2015) Granite-related Sn-W-Ree mineralization of Mawchi and Dawei areas. Kyushu University, Myanmar

  • Myint AZ, Zaw K, Swe YM et al (2017) Geochemistry and geochronology of granites hosting the Mawchi SN-W deposit, Myanmar: implications for tectonic setting and emplacement. Geological Society Memoir. Geological Society of London, pp 385–400

  • Mysen BO, Cody GD, Smith A (2004) Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68:2745–2769. https://doi.org/10.1016/j.gca.2003.12.015

    Article  Google Scholar 

  • Nash WP (1993) Fluorine iron biotite from the honeycomb hills rhyolite, Utah: the halogen record of decompression in a silicic magma. Am Mineral 78:1031–1040

    Google Scholar 

  • Odikadze GL (1971) Distribution of fluorine in the granitoids of the great Caucasus and Dzirul massif. Geokhimiya 5:523–533

    Google Scholar 

  • Pearce JA, Gale GH (1977) Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geol Soc Spec Publ 7:14–24. https://doi.org/10.1144/GSL.SP.1977.007.01.03

    Article  Google Scholar 

  • Peiffert C, Nguyen-Trung C, Cuney M (1996) Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770°C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529. https://doi.org/10.1016/0016-7037(96)00039-7

    Article  Google Scholar 

  • Rich R, Bailey DK, Macdonald R, Powell BN (1977) Hydrothermal uranium deposits. Dev Econ Geol 6:361–362

    Google Scholar 

  • Roedder E (1984) Fluid inclusions: reviews in mineralogy. Mineral Soc Am Washingt DC 12.

  • Rossi JN, Toselli AJ, Basei MA, Sial AN, Baez M (2011) Geochemical indicators of metalliferous fertility in the Carboniferous San Blas pluton, Sierra de Velasco, Argentina. Geol Soc Spec Publ 350:175–186. https://doi.org/10.1144/SP350.10

    Article  Google Scholar 

  • Sagiroglu A (1984) Akdagmadeni (Yozgat) kontakt metasomatik yataklarinda sivi kapanim çalişmalari. Akdagmadeni kontakt metasomatik yataklarinda sivi kapanim çalişmalari 27

  • Saleh GM, Kamar MS (2018) Geochemical characteristics and radioactive elements estimation along trenches of Um Ara area, South Eastern Desert. Egypt Geoinformatics Geostatistics An Overv 06. https://doi.org/10.4172/2327-4581.1000178

  • Sallet R, Moritz R, Fontignie D (2000) Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk D(Sr) of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil. Chem Geol 164:81–92. https://doi.org/10.1016/S0009-2541(99)00143-6

    Article  Google Scholar 

  • Schönenberger J, Köhler J, Markl G (2008) REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland. Chem Geol 247:16–35. https://doi.org/10.1016/j.chemgeo.2007.10.002

    Article  Google Scholar 

  • Schwinn G, Markl G (2005) REE systematics in hydrothermal fluorite. Chem Geol 216:225–248. https://doi.org/10.1016/j.chemgeo.2004.11.012

    Article  Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pederson C, Trueman DL (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107:81–104. https://doi.org/10.2113/econgeo.107.1.81

    Article  Google Scholar 

  • Streckeisen A, Le Maitre R (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Miner Abh 136:169–206

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97:261–280. https://doi.org/10.1086/629302

    Article  Google Scholar 

  • Tischendorf G (1977) Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. Stemprok, M, Burn L Tischendorf, G, Met Assoc with acid Magmat 2:41–98

    Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF, Bai ZH (2006) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos 89:424–446. https://doi.org/10.1016/j.lithos.2005.12.010

    Article  Google Scholar 

  • Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico. Econ Geol 89:840–850. https://doi.org/10.2113/gsecongeo.89.4.840

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419. https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  • White AJR, Collins WJ, Chappell B (1982) Influence of melt structure on the trace element composition of granites. In: Proceedings of the International Symposium. Nanjing University, China, pp 737–751

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272. https://doi.org/10.1016/S0024-4937(00)00047-5

    Article  Google Scholar 

  • Wones DR (1989) Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks. Am Mineral 74:744–749

    Google Scholar 

  • Yang XM (2017) Estimation of crystallization pressure of granite intrusions. Lithos 286–287:324–329. https://doi.org/10.1016/j.lithos.2017.06.018

    Article  Google Scholar 

  • Zhao KD, Jiang SY, Dong CY, Chen WF, Chen PR, Ling HF, Zhang J, Wang KX (2011) Uranium-bearing and barren granites from the Taoshan Complex, Jiangxi Province, South China: Geochemical and petrogenetic discrimination and exploration significance. J Geochem Explor 110:126–135. https://doi.org/10.1016/j.gexplo.2011.04.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. Götzinger for his kind help during the fluid inclusion measurements. The authors sincerely express their appreciation and thanks to the editor and reviewers whose critical commentary has significantly improved the quality of this publication.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Omar Amer: Conceptualization, visualization, writing-original draft

Prof. Dr. Sherif Kharbish: Conceptualization, project administration, formal analysis, review and editing

Dr. Ali Maged: Conceptualization, writing-original draft, visualization, review and editing

Dr. Fares Khedr: Project administration, visualization, writing

Corresponding author

Correspondence to Ali Maged.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Zakaria Hamimi

This article is part of the Topical Collection on Current Advances in Geological Research of Egypt

Omar Amer and Sherif Kharbish share co-first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, O., Kharbish, S., Maged, A. et al. Geochemical insight into granite hosted U-rich fluorite, Gabal El-Erediya area, Central Eastern Desert, Egypt: REE geochemical and fluid inclusion aspects. Arab J Geosci 14, 1232 (2021). https://doi.org/10.1007/s12517-021-07593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07593-3

Keywords

Navigation