Skip to main content

Advertisement

Log in

Application of remote sensing data in gold exploration: targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Mapping hydrothermal alteration minerals and structural lineaments using Landsat 8 multispectral imagery provides valuable information for mineral exploration. In northern Portugal, there are several known gold occurrences, but there is the potential to identify new anomalous areas. Gold mineralization occurs in the form of quartz veins and veinlets associated with hydrothermal alteration halos. Fractures are interpreted as conduits for mineralizing fluids, where the interaction between the wall rock and hydrothermal fluids induces compositional variations. Identifying these features is one of the key indicators for targeting new prospective zones of orogenic gold mineralization in the Boticas–Chaves region. Remote sensing image processing methods such as band combinations, band ratios, and principal component analysis (PCA) were implemented to the visible, near-infrared, and shortwave infrared bands of Landsat 8. The results of this investigation demonstrate the capability of the applied imagery enhancement methods in distinguishing different features and identifying hydrothermally altered rocks. Selective PCA proved to be the most effective and reliable method to identify iron oxides and hydroxyl-bearing minerals, compared to other methods, where a simple imagery analysis has a strong influence of noise and is more challenging to interpret. Enhanced imagery allowed the identification of physiographic characteristics and extracted structural features. The combination of mapped hydrothermal alteration minerals and extracted structural features allowed us to predict potential areas for the mineralization occurrence. This investigation proves that remote sensing can be a cost-efficient and time-saving technique for mineral exploration, and its application in new areas can accurately map hydrothermal alteration and outline potential new exploration targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali A, Pour A (2014) Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in Ariab mining district, red sea hills, Sudan. Int J Sci 3(3):199–208. https://doi.org/10.14419/ijbas.v3i3.2821

    Article  Google Scholar 

  • Beygi S, Talovina IV, Tadayon M, Pour AB (2020) Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration. Int J Image Data Fusion:1–21. https://doi.org/10.1080/19479832.2020.1838628

  • Bolouki SM, Ramazi HR, Maghsoudi A, Pour AB, Sohrabi G (2020) A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran area, NW Iran. Remote Sens 12:105. https://doi.org/10.3390/rs12010105

    Article  Google Scholar 

  • Booysen R, Gloaguen R, Lorenz S, Zimmermann R, Andreani L, Ne PAM (2019) The potential of multi-sensor remote sensing mineral exploration: examples from Southern Africa. Proceedings of the IGARSS 2019 – IEEE International Geoscience and Remote Sensing Symposium, edited by IEEE, 6027-6030. Yokohama, Japan. https://doi.org/10.1109/IGARSS.2019.8899081

  • Cabral J. (1995) Neotectónica em Portugal continental, Memórias 31. Instituto Geológico e Mineiro. 265p.

  • Cardoso-Fernandes J, Lima A, Teodoro A (2018) Sentinel-2 data as a tool for structural mapping. Conference: VIII Congresso Jovens Investigadores em Geociências, LEG. Estremoz.

  • Cardoso-Fernandes J, Teodoro AC, Lima A (2019) Remote sensing data in lithium (Li) exploration: a new approach for the detection of Li-bearing pegmatites. Int J Appl Earth Obs Geoinf 76:10–25. https://doi.org/10.1016/j.jag.2018.11.001

    Article  Google Scholar 

  • Cardoso-Fernandes J, Teodoro AC, Lima A, Perrota M, Roda-Robles E (2020a) Detecting Lithium (Li) mineralizations from space: current research and future perspectives. Appl Sci (Switzerland) 10(5):1785. https://doi.org/10.3390/app10051785

    Article  Google Scholar 

  • Cardoso-Fernandes J, Teodoro AC, Lima A, Roda-Robles E (2020b) Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites. Remote Sens 12(14):2319. https://doi.org/10.3390/rs12142319

    Article  Google Scholar 

  • Catalán JR., Arenas R, García F, Cuadra P, Gómez Barreiro J, Abat, J, Castiñeiras P, Fernández-Suárez J, Martínez S, Andonaegui P, et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. Vol. 200. ISBN 978-0-8137-1200-0.

  • Cepedal A, Martínez-Abad I, Fuertes-Fuente M, Lima A (2013) The presence of plumboan ingodite and a rare Bi-Pb tellurosulfide, Pb3Bi4Te4S5, in the Limarinho gold deposit, northern Portugal. Can Mineral 51:643–651. https://doi.org/10.3749/canmin.51.4.643

    Article  Google Scholar 

  • COGEMA (1990) Sector de Poço das Freitas. Relatório de trabalhos. Unpublished report: 49 p.

  • Congedo L (2016.) Semi-automatic classification plugin documentation. Release 6.0.1.1. https://doi.org/10.13140/RG.2.2.29474.02242/1

  • Crósta A, Moore JM (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: a prospecting case history in Greenstone belt terrain. Proceedings of the 7th (ERIM) Thematic Conference: Remote Sensing for Exploration Geology. 1173–1187.

  • Crósta A, Rabelo A (1993) Assessing Landsat/TM for hydrothermal alteration mapping in central- western Brazil. Proceedings of the Ninth Thematic Conference on Geologic Remote Sensing: Exploration, Environment, and Engineering, Vols 1 and 2: 1053–1061

  • Crósta A, Souza Filho C, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240. https://doi.org/10.1080/0143116031000152291

    Article  Google Scholar 

  • Cudahy T (2016) Mineral mapping for exploration: an Australian journey of evolving spectral sensing technologies and industry collaboration. Geosciences 6:52. https://doi.org/10.3390/geosciences6040052

    Article  Google Scholar 

  • Dias G, Leterrier J, Mendes A, Simões PP, Bertrand JM (1998) U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45:349–369. https://doi.org/10.1016/S0024-4937(98)00039-5

    Article  Google Scholar 

  • Drury SA (2001) Image interpretation. In Geology, edited by Nelson Thornes. Blackwell Science, USA. ISBN 978-0-632-05408-4.

  • Eldosouky AM, Sehsah H, Elkhateeb SO,  Pour AB (2020) Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani Suture zone, South Eastern Desert, Egypt. Adv Space Res 65(3):1008–1024. https://doi.org/10.1016/j.asr.2019.10.030

  • Farias P, Gallastegui G, González Lodeiro L, Marquínez J, Martín Parra LM, Martínez Catalán JR, Pablo Maciá JG, Rodríguez Fernández LR (1987) Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. Memórias da Faculdade de Ciências da Universidade do Porto 1:411–431

    Google Scholar 

  • Ferreira N, Iglesias M, Noronha F, Pereira E, Ribeiro A, Ribeiro ML (1987) Granitoides da Zona Centro Ibérica e seu enquadramento geodinâmico in Geologia de los Granitoides y Rocas asociadas del Macizo Hesperico. Bea, edited by: F. C., Carnicero, A., Gonzalo, J. C., López Plaza, M., Rodríguez Alonso, M.D., Rueda, Madrid. 37-51.

  • Ferreira MP, Zortea M, Zanotta DC, Féret JB, Shimabukuro YE, Souza Filho CR (2015) On the use of shortwave infrared for tree species discrimination in tropical semideciduous forest. Int Arch Photogramm Remote Sens Spat Inf Sci XL-3/W3:473–476. https://doi.org/10.5194/isprsarchives-XL-3-W3-473-2015

    Article  Google Scholar 

  • Fuertes-Fuente M, Cepedal A, Lima A, Dória A, Ribeiro M, Guedes A (2016) The Au-bearing vein system of the Limarinho Deposit (Northern Portugal): genetic constraints from Bi-chalcogenides and Bi-Pb-Ag sulfosalts, fluid inclusions and stable isotopes. Ore Geol Rev 72:213–231. https://doi.org/10.1016/j.oregeorev.2015.07.009

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38:59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  • Goetz AF, Rowan LC, Kingston MJ (1982) Mineral identification from orbit: initial results from the shuttle multispectral infrared radiometer. Science 218:1020–1024. https://doi.org/10.1126/science.218.4576.1020

    Article  Google Scholar 

  • Goetz A (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113:S5–S16. https://doi.org/10.1016/j.rse.2007.12.014

    Article  Google Scholar 

  • Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42:501–513. https://doi.org/10.1190/1.1440721

    Article  Google Scholar 

  • Jain N, Singh R, Roy P, Martha TR, Vinod Kumar K, Chauhan P (2018) Mapping of hydrothermally altered zones in Aravalli Supergroup of rocks around Dungarpur and Udaipur, India, using Landsat-8 OLI and spectroscopy. Arab J Geosci 11:455. https://doi.org/10.1007/s12517-018-3799-5

    Article  Google Scholar 

  • Julivert M, Fontboté JM, Ribeiro A, Conde LEN (1974) Mapa Tectónico de la Península Ibérica y Baleares, Scale 1:1000.000. Memória Explicativa. Instituto Geologico y Minero de España, Madrid.

  • Nikolakopoulos KG, Tsombos PI, Skianis GA, Vaiopoulos DA (2008) EO-1 Hyperion and ALI bands simulation to Landsat 7 ETM+ bands for mineral mapping in Milos Island. Proc. SPIE 7110, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VIII, 711010. https://doi.org/10.1117/12.798745

  • Lima A, Matías Rodríguez R, Fonte J, Pires H (2014a) The historic gold mining in the high Terva river basin (Northern Portugal). Comunicações Geológicas III 101:1289–1293 https://repositorio-aberto.up.pt/handle/10216/82428

    Google Scholar 

  • Lima A, Matias R, Mendonça A (2011) Contribuição para o estudo da Mineração Romana de ouro na Bacia do Rio Terva. In Povoamento e exploração dos recursos mineiros na Europa Atlântica Ocidental, edited by: Martins, C.M.B., Bettencourt, A.M.S., Martins, J.I.F.P., Carvalho, J., 241-256. Centro de Investigação Transdisciplinar “Cultura, Espaço e Memória”/Associação Portuguesa para o Estudo do Quaternário (CITCEM/APEQ), Braga. ISBN: 978-989-97558-5-7

  • Lima A, Teodoro AC, Casimiro JP (2014b) Evaluation of remote sensing data potential in the geological exploration of Freixeda area (Mirandela, Portugal): a preliminary study. Paper presented at the SPIE Remote Sensing. https://doi.org/10.1117/12.2067183

  • Lotze F (1945) Zur Gliederung der Varisziden der Iberischen Meseta. Geotekt Forsch 6:78–92

    Google Scholar 

  • Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57(9):1163–1169 ISSN: 0099-1112

    Google Scholar 

  • Lourenço J, Mateus A, Coke C, Ribeiro A (2002) The Penacova-Régua-Verín Fault Zone in the Telões region (Vila Pouca de Aguiar); some determinant features of its evolution in Late-Variscan times. Comunicações do Instituto Geológico e Mineiro 89:105–122

    Google Scholar 

  • Mahboob MA, Genc B, Celik T, Ali S, Atif I (2019) Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from Landsat. J South Afr Inst Min Metall 119(3):279–289. https://doi.org/10.17159/2411-9717/2019/v119n3a7

    Article  Google Scholar 

  • Manuel R, Brito M, Chichorro M, Rosa C (2017) Remote sensing for mineral exploration in Central Portugal. Minerals 7(10):184. https://doi.org/10.3390/min7100184

    Article  Google Scholar 

  • Martins CB (2005) A exploração mineira romana e a metalurgia do ouro em Portugal. PhD thesis. University of Porto, Porto, Portugal. ISSN: 1647-0745

  • Matias R (2004) Ingenieria Minera Romana. In Elementos de Ingenieria Romana. Congresso Europeo “Las Obras Públicas Romanas”, Edited by Alba R, Gallo IM, Rodríguez RG. Colegio de Inginieros Técnicos de Obras Públicas. Tarragona, España. ISBN: 84-688-8190-2

  • Mia M, Fujimitsu Y (2012) Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. J Earth Syst Sci 121(4):1049–1057. https://doi.org/10.1007/s12040-012-0211-9

    Article  Google Scholar 

  • Mielke C, Bösche N, Rogaß C, Segl K, Gauert C, Kaufmann H (2014) Potential applications of the Sentinel-2 multispectral sensor and the Enmap hyperspectral sensor in mineral exploration. EARSeL eProceedings 13(2):93–102. https://doi.org/10.12760/01-2014-2-07

    Article  Google Scholar 

  • Moradi M, Basiri S, Kananian A, Kabiri K (2014) Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Sci Inf 8:197–205. https://doi.org/10.1007/s12145-014-0151-9

    Article  Google Scholar 

  • Moulton JP, Ridd MK (1990) Integrating remotely sensed data with geophysical data for discrimination of hydrothermally-altered features. 10th Annual International Symposium on Geoscience and Remote Sensing: 2485 - 2488. College Park, Maryland, USA. https://doi.org/10.1109/IGARSS.1990.688943

  • Murakami T (2006) How is short-wave infrared (SWIR) useful to discrimination and classification of forest types in warm temperate region? J Forest Plann 12(2):81–85. https://doi.org/10.20659/jfp.12.2_81

    Article  Google Scholar 

  • Mwaniki MW, Moeller MS, Schellmann G (2015) A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya. International Archives of the Photogrammetry. Remote Sens Spat Inform Sci XL-7(W3):897–903. https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015

    Article  Google Scholar 

  • Noronha F, Cathelineau M, Boiron MC, Dória A, Ribeiro M, Nogueira P, Guedes A (2000) A three stage fluid flow model for Variscan gold metallogenesis in northern Portugal. J Geochem Explor 71:209–224. https://doi.org/10.1016/S0375-6742(00)00153-9

    Article  Google Scholar 

  • Noronha F, Ramos JMF (1993) Mineralizações auríferas primárias no norte de Portugal. Algumas reflexões Cadernos do Laboratorio Xeolóxico de Laxe: Revista de xeoloxía galega e do hercínico peninsular Coruña 18:133–146 ISSN 0213-4497

    Google Scholar 

  • Noronha F, Ribeiro M, Almeida A, Dória A, Guedes A, Lima A, Martins H, Sant’Ovaia H, Nogueira P, Martins T et al. (2013) Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (norte de Portugal): 403–438. In Geologia de Portugal Volume I - Geologia Pré-mesozóica de Portugal, edited by Rui Dias, Alexandre Araújo, Pedro Terrinha, José Carlos Kullberg, Escolar Editora. ISBN 978-972-592-364-1.

  • Pereira B, Azevedo J, Oliveira J, Dias PSA, Leal Gomes C, Carvalho J, Marques A (2012) Contribution of remote sensing to the evidence and location of granite hosted pegmatites–Ponte da Barca (Minho). In MQ Ferreira, MT Barata, FC Lopes, AI Andrade, MH Henriques, R Pena dos Reis, EI Alves (Eds.), Para Desenvolver a Terra: Memórias e Notícias de Geociências no Espaço Lusófono (pp. 235-244): Imprensa da Universidade de Coimbra. http://hdl.handle.net/1822/30031

  • Porwal AK, Kreuzer OP (2010) Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation. Ore Geol Rev 38(3):121–127. https://doi.org/10.1016/j.oregeorev.2010.06.002

    Article  Google Scholar 

  • Pour A, Hashim M (2015) Hydrothermal alteration mapping using Landsat 8 data, Sar Cheshmeh copper mining district, SE Iran. J Taibah Univ Sci 9(2):155–166. https://doi.org/10.1016/j.jtusci.2014.11.008

  • Pour AB, Park Y, Park TS, Hong JK, Hashim M, Woo J, Ayoobi I (2018a) Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int 34(7):785–816. https://doi.org/10.1080/10106049.2018.1434684

    Article  Google Scholar 

  • Pour AB, Park TS, Park Y, Hong JK, Zoheir B, Pradhan B, Ayoobi I, Hashim M (2018b) Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens 10:1186. https://doi.org/10.3390/rs10081186

    Article  Google Scholar 

  • Pour AB, Park T-YS, Park Y, Hong JK, Muslim AM, Läufer A, Crispini L, Pradhan B, Zoheir B, Rahmani O, Hashim M, Hossain MS (2019) Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper-gold mineralization in the northeastern Inglefield Mobile Belt (IMB), northwest Greenland. Remote Sens 11(20):2430. https://doi.org/10.3390/rs11202430

    Article  Google Scholar 

  • Rajesh HM (2004) Application of remote sensing and GIS in mineral: resource mapping-an overview. J Mineral Petrol Sci 99(3):83–103. https://doi.org/10.2465/jmps.99.83

    Article  Google Scholar 

  • Ribeiro MA, Martins HC, Almeida A, Noronha F (2000) Carta Geológica de Portugal, escala 1:50 000, 6-C (Cabeceiras de Basto), Notícia Explicativa. Serviços Geológicos de Portugal, 48.

  • Ribeiro A, Marcos A, Pereira E, Llana-Funez S, Farias P, Fernández FJ, Fonseca P, Chaminé H, Rosas F (2003) 3-D strain distribution in the Ibero-Armorican arc : a review. Ciências da Terra, Universidade de Lisboa 5:63–64

    Google Scholar 

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca P, Araújo A, Oliveira T, Romão J, Chaminé H, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26:1–24. https://doi.org/10.1029/2006TC002058

    Article  Google Scholar 

  • Ridwan MA, Radzi N, Ahmad W, Mustafa I, Din N, Jalil Y, Isa A, Othman N, Zaki W (2018) Applications of Landsat-8 data: a survey. Int J Eng Technol 7(4.35):436–441. https://doi.org/10.14419/ijet.v7i4.35.22858

    Article  Google Scholar 

  • Robert F, Brommecker R, Bourne B, Dobak PJ, Mcewan C, Rowe RR, Zhou X (2007) Models and exploration methods for major gold deposit types. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 691–711.

  • Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermal altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42:522–535. https://doi.org/10.1190/1.1440723

    Article  Google Scholar 

  • Sabins F (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Safari M, Maghsoudi A, Pour A (2017) Application of Landsat-8 and ASTER satellite remote sensing data for Porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int 1–42. https://doi.org/10.1080/10106049.2017.1334834

  • Salisbury JW, Walter LS, Vergo N (1989) Availability of a library of infrared (2.1-25.0 μm) mineral spectra. Am Mineral 74:938–939 ISSN: 0003-004X

    Google Scholar 

  • Sekandari M, Masoumi I, Pour AB, Muslim MA, Rahmani O, Hashim M, Zoheir B, Pradhan B, Misra A, Aminpour SM (2020) Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Remote Sens 12:1239. https://doi.org/10.3390/rs12081239

    Article  Google Scholar 

  • Singh A, Harrison A (1985) Standardized principal components. Int J Remote Sens 6:883–896. https://doi.org/10.1080/01431168508948511

    Article  Google Scholar 

  • Takodjou Wambo JD, Pour AB, Ganno S, Asimow PD, Zoheir B, Reis Salles RD, Nzenti JP, Pradhan B, Muslim AM (2020) Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: a case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geol Rev 122:103530. https://doi.org/10.1016/j.oregeorev.2020.103530

    Article  Google Scholar 

  • Traore M, Takodjou Wambo JD, Ndepete CP, Tekin S, Pour AB, Muslim MA (2020) Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. J Afr Earth Sci 170:103933. https://doi.org/10.1016/j.jafrearsci.2020.103933

    Article  Google Scholar 

  • USGS (2012) Landsat-a global land-imaging mission: U.S. Geological Survey Fact Sheet 2012. 3072, 4 p. (Revised July 19, 2012). https://pubs.usgs.gov/fs/2012/3072/

  • USGS (2020a) Landsat 8 (L8) data users handbook. 114. Using the USGS Landsat Level-1 data Product. Available online: https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product. Accessed March 2020

  • USGS (2020b) Using the USGS Landsat level-1 data product. Available online: https://ww.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product. Accessed March 2020

  • van der Meer FD, van der Werff HMA, van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, van der Meijde M, Carranza EJM, Smeth JB, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14:112–128. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • Xiang J, Xiao K, Carranza EJM, Chen J, Li S (2020) 3D Mineral prospectivity mapping with random forests: a case study of Tongling, Anhui, China. Nat Resour Res 29(1):395–414. https://doi.org/10.1007/s11053-019-09578-2

    Article  Google Scholar 

  • Zoheir B, Emam A (2012) Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. J Afr Earth Sci 66–67:22–34. https://doi.org/10.1016/j.jafrearsci.2012.02.007

    Article  Google Scholar 

  • Zoheir B, El-Wahed MA, Pour AB, Abdelnasser A (2019) Orogenic gold in transpression and transtension zones: field and remote sensing studies of the Barramiya–Mueilha Sector, Egypt. Remote Sens 11:21–22. https://doi.org/10.3390/rs11182122

    Article  Google Scholar 

Download references

Funding

The authors received financial support provided by FCT—Fundação para a Ciência e a Tecnologia, where Rui Frutuoso is financially supported within the compass of the ERA-MIN/0005/2018—AUREOLE project, FEDER through operation POCI-01-0145-FEDER-007690 funded by the Programa Operacional Competitividade Internacionalização—COMPETE2020 and by National Funds through FCT within the ICT (reference UIDB/04683/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cláudia Teodoro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frutuoso, R., Lima, A. & Teodoro, A.C. Application of remote sensing data in gold exploration: targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arab J Geosci 14, 459 (2021). https://doi.org/10.1007/s12517-021-06786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06786-0

Keywords

Navigation