Skip to main content

Advertisement

Log in

Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Gossans (Fe-rich alteration zones) are the surface indications of massive sulfide, porphyry and skarn deposits in the Arabian Nubian Shield. They consist of limonite, goethite, hematite, malachite, and azurite. The Khunayqiyah gossans, Eastern Arabian Shield, Saudi Arabia, have been used to demonstrate the effectiveness of using the Landsat 8 OLI imagery for detecting and delineating of gossan zones in arid regions. The Khunayqiyah gossans have diagnostic spectral features, and they are often larger than the pixel size of the Landsat 8 OLI images. Remote sensing techniques in this study include pan sharpening, principal component analysis (PCA), minimum noise fraction (MNF), and band ratio. The RGB (red, green, blue) color composites of pan-sharpened original bands (4, 3, 2), PCA (PC3, PC2, PC1) and MNF (MNF2, MNF4, MNF3) images were found to be the most useful to delineate gossan/alteration zones in the Khunayqiyah district. The obtained results show reasonable matches between the spectra of collected samples and image-derived spectra from Landsat 8 data. Notably, the use of above-mentioned technique for mineral exploration is facilitated by the arid environment. The results of this study demonstrate Landsat 8 OLI images and the above-mentioned technique are useful in the exploration of new gossan occurrences in the Arabian Nubian Shield and other arid regions worldwide where little in situ geological data exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abdelhamid, G., & Rabba, I. (1994). An investigation of mineralized zones revealed during geologic mapping, Jabal Hamra Faddan-Wadi Araba, Jordan, using Landsat TM data. International Journal of Remote Sensing, 15, 1495–1506.

    Article  Google Scholar 

  • Abdelsalam, M., Stern, R. J., & Berhane, W. G. (2000). Mapping gossans in arid environments with Landsat TM and SIR-C images: the Beddaho alteration zone in northern Eritrea. Journal of African Earth Sciences, 30, 903–916.

    Article  Google Scholar 

  • Agar, R. A. (1992). The tectno-metallogenic evolution of the Arabian Shield. Precambrian Research, 58, 169–194.

    Article  Google Scholar 

  • Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3), 199–208.

    Article  Google Scholar 

  • Al-Saleh, A. M., & Boyle, A. P. (2001). Structural rejuvenation of the eastern Arabian shield during continental collision: 40Ar/39Ar evidence from the Ar Ridayniyah ophiolite mélange. Journal of African Earth Sciences, 33, 135–141.

    Article  Google Scholar 

  • Al-Shanti, A. M. S., & Roobol, M. J. (1979). Some thoughts on metallogenesis and evolution of the Arabian-Nubian Shield. In A. M. S. Al-Shanti (Ed.), Evolution and mineralization of the Arabian-Nubian Shield (pp. 87–96). New York: Pergamon Press.

    Chapter  Google Scholar 

  • Aye, F., Cheze, Y., & El-Hindi, M. (1985). Discovery of a major massive sulfide province in northeastern Sudan. In Prospecting in areas of desert terrains, rabat, conference proceedings (pp. 43–48).

  • Bakheit, A. K., & Matheis, G. (1993). Gold-productive volcanogenic sulfide mineralization in the Ariab Belt, Red Sea Hills, Sudan: Evidence for Late Proterozoic seafloor hydrothermal systems. In U. Thorweiehe & H. Schandelmeier (Eds.), Geoscientific research in Northeast Africa (pp. 533–540). Roterdam: Balkema.

    Google Scholar 

  • Bennett, S. A., Atkinson, W. W., & Kruse, F. K. (1993). Use of thematic mapper imagery to identify mineralization in the Santa Teresa District, Sonora, Mexico. International Geology Review, 35, 1009–1029.

    Article  Google Scholar 

  • BRGM Geoscientists. (1993a). Khnaiguiyah zinc–copper deposit prefeasibility study: Synopsis of geology and mineralization. Saudi Arabian Directorate General of Mineral Resources, Technical Report, BRGM-TR-13-4.

  • BRGM Geoscientists. (1993b). Khnaiguiyah zinc–copper deposit prefeasibility study: Introduction. Saudi Arabian Directorate General of Mineral Resources, Technical Report, BRGM-TR-13-4.

  • Calvez, J. Y., Alsac, C., Delfour, J., Kemp, J., & Pellaton, C. (1983). Geologic evolution of western, central and eastern parts of the northern Precambrian Shield, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry of Mineral Resources, Open-file report, BRGM-OF-03-17.

  • Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily-vegetated terrane. International Journal of Remote Sensing, 23, 4827–4852.

    Article  Google Scholar 

  • Chen, C. (2000). Comparison of principal component analysis and minimum noise fraction transformation for reducing the dimensionality of hyperspectral imagery. Journal of Geographic Research, 33, 163–178.

    Google Scholar 

  • Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., & Righini, G. (2013a). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, 6, 4529–4546.

    Article  Google Scholar 

  • Ciampalini, A., Garfagnoli, F., Antonielli, B., Ventisette, C., & Moretti, S. (2012). Photo-lithological map of the southern flank of the Tindouf Basin (Western Sahara). Journal of Maps, 8, 453–464.

    Article  Google Scholar 

  • Ciampalini, A., Garfagnoli, F., Del Ventisette, C., & Moretti, S. (2013b). Potential use of remote sensing techniques for exploration of iron deposits in Western Sahara and Southwest of Algeria. Natural Resources Research, 22, 179–190.

    Article  Google Scholar 

  • Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. N. Rencz (Ed.), Manual of remote sensing (pp. 3–58). New York: Wiley.

    Google Scholar 

  • Crosta, A. P., & Moore, J. (1989). Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone Belt Terrain. In The 7th thematic conference on remote sensing for exploration geology, Calgary, Alberta, 1989, conference proceedings (pp. 1173–1187).

  • Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15, 129–149.

    Article  Google Scholar 

  • Drury, S. A. (1987). Image interpretation in geology. London: Allen & Unwin.

    Book  Google Scholar 

  • Drury, S. A. (1993). Image interpretation in geology. London: Chapman & Hall.

    Google Scholar 

  • Elsayed Zeinelabdein, K. A., & El Nadi, A. H. (2014). The use of Landsat 8 OLI image for the delineation of gossanic ridges in the Red Sea Hills of NE Sudan. American Journal of Earth Sciences, 1, 62–67.

    Google Scholar 

  • Evans, D. (1988). Multi-sensor classification of sedimentary rocks. Remote Sensing of the Environment, 25, 129–144.

    Article  Google Scholar 

  • Gaffey, S. J. (1986). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.

    Google Scholar 

  • Genna, A., Nehlig, P., Le Goff, E., Gguerrot, C., & Shanti, M. (2002). Proterozoic tectonism of the Arabian Shield. Precambrian Research, 117, 21–40.

    Article  Google Scholar 

  • Goetz, A. F. H., Vane, G., Solomon, J. E., & Rock, B. N. (1985). Imaging spectrometry for earth remote sensing. Science, 228, 1147–1153.

    Article  Google Scholar 

  • Goldsmith, R., & Kouther, J. H. (1971). Geology of the Mahd adh Dhahab-Umm ad Damar area, Kingdom of Saudi Arabia. Directorate General of Mineral Resources, Saudi Arabia, Mineral Resources Bulletin 6.

  • Goossens, M. A. (1993). Integrated analysis of Landsat TM, airborne magnetic, and radiometric data, as an exploration tool for granite-related mineralization, Salamanca province, Western Spain. Nonrenewable Resources, 2, 14–30.

    Article  Google Scholar 

  • Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.

    Article  Google Scholar 

  • Haldar, S. K. (2013). Mineral exploration: Principles and applications. Elsevier Science Publisher, p. 372.

  • Hunt, G. R., & Salisbury, J. W. (1971). Visible and near-infrared spectra of minerals and rocks, II. Carbonates. Modern Geology, 2, 23–30.

    Google Scholar 

  • Hunt, G. R., Salisbury, J. W., & Lenhoff, C. J. (1971). Visible and near-infrared spectra of minerals and rocks, IV. Sulfides and sulfates. Modern Geology, 3, 1–14.

    Google Scholar 

  • Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21.

    Article  Google Scholar 

  • ITT. (2009). Atmospheric correction module: QUAC and FLAASH user’s guide http://www.exelisvis.com/portals/0/pdfs/envi/Flaash_Module.pdf.

  • Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective. Prentice Hall: Prentice Hall Series in Geographic Information Science.

    Google Scholar 

  • Johnson, P. R. (1994). The Nakasib suture: a compilation of recent information about a Sudanese fold and thrust belt, and implications for the age, structure and mineralization of the Bir Umq suture, Kingdom of Saudi Arabia. USGS Open-File Report, USGS-OF-94-6.

  • Johnson, B. A., Tateishi, R., & Hoan, N. T. (2012). Satellite image pansharpening using a hybrid approach for object-based image analysis. ISPRS International Journal of Geo-Information, 1(3), 228–241.

    Article  Google Scholar 

  • Johnson, P. R., & Woldehaimanot, B. (2003). Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In M. Yoshida, B. F. Windley, & S. Dasgupta (Eds.), Proterozoic East Gondwana: Super continent assembly and break-up (pp. 289–325). London: Geological Society, Special Publication 206.

    Google Scholar 

  • Kaufmann, H. (1988). Mineral exploration along the Aqaba-Levant structure by use of TM data: concepts, processing and results. International Journal of Remote Sensing, 9, 1639–1658.

    Article  Google Scholar 

  • Kenea, N. H. (2001). Influence of desert varnish on the reflectance of gossans in the context of Landsat TM data, southern Red Sea Hills, Sudan. International Journal of Remote Sensing, 22, 1879–1894.

    Article  Google Scholar 

  • Kröner, A., & Stern, R. J. (2004). Africa/Pan-African orogeny. Encyclopedia of Geology, 1, 1–12.

    Google Scholar 

  • Lee, D. S., Storey, J. C., Choate, M. J., & Hayes, R. (2004). Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Transactions on Geoscience and Remote Sensing, 42, 2786–2795.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, W. (1994). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • Lofts, P. G. (1994). Al Amar gold deposit. In P. Colenette & D. J. Grainger (Eds.), Mineral resources of Saudi Arabia, not including oil, natural gas and sulfur. Directorate General of Mineral Resources (pp. 95–99). Jeddah: Special Publication DGMR SP-2.

    Google Scholar 

  • Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

    Google Scholar 

  • Madani, A. M. (2009). Utilization of Landsat ETM+ data for mapping gossans and iron rich zones exposed at Bahrah area, western Arabian Shield, Saudi Arabia. Journal of King Abdulaziz University: Earth Sciences, 20, 35–49.

    Google Scholar 

  • Madani, A., Abdel Rahman, E. M., Fawzy, K. M., & Emam, A. (2003). Mapping of the hydrothermal alteration zones at Haimur Gold Mine Area, South Eastern Desert, Egypt by using remote sensing techniques. The Egyptian Journal of Remote Sensing & Space Sciences, 6, 47–60.

    Google Scholar 

  • Madani, A., & Bishta, A. (2002). Selection of the optimum bands of Landsat-7 ETM+ for automatic lineaments extraction: A case study of Qattar Granites, North Eastern Desert, Egypt. In The 6th international conference on the geology of the Arab World, Cairo, Egypt, 2002, conference proceedings (pp. 353–360).

  • Manivit, J., Pellaton, C., Vaslet, D., Le Nidre, Y. M., Brosse, J. M., Breton, J. P., & Fourniguet, J. (1985). Geologic map of the Darma quadrangle, Sheet 24H, Kingdom of Saudi Arabia (with text). Jeddah, Saudi Arabian Deputy Ministry for Mineral Resources, Geoscience Map GM-101C.

  • Moore, J. M. (1983). Tectonic fabric and structural control of mineralization in the Southern Arabian Shield. USGS-OF-03-105.

  • Nehlig, P., Genna, A., & Asirfane, F. (2002). A review of the Pan-African evolution of the Arabian Shield. GeoArabia, 7, 103–124.

    Google Scholar 

  • Okada, K., & Ishii, M. (1993). Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator. In Proceedings of International Geoscience and Remote Sensing Symposium 1993 (IGARSS'93), Better Understanding of Earth Environment (pp. 126–128). Tokyo: IEEE. doi:10.1109/IGARSS.1993.322501.

  • Qaid, A. M., Basavarajappa, H. T., & Rajendran, S. (2009). Integration of VNIR and SWIR spectral reflectance for mapping mineral resources: A case study, north east of Hajjah, Yemen. Journal of Indian Society of Remote Sensing, 37, 305–315.

    Article  Google Scholar 

  • Ramadan, T. M., Abdelsalam, M. G., & Stern, R. J. (2001). Mapping gold-bearing massive sulfide deposits in the Neoproterozoic Allaqi Suture, Southeast Egypt with Landsat TM and SIR-C/X SAR images. Photogrammetric Engineering & Remote Sensing, 67, 491–497.

    Google Scholar 

  • Ranjbar, H., Masoumi, F., & Carranza, E. J. M. (2011a). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32, 3309–3327.

    Article  Google Scholar 

  • Ranjbar, H., Masoumi, F., & Carranza, E. J. M. (2011b). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32, 3309–3327.

    Article  Google Scholar 

  • Rockwell, B. W. (1989). Hydrothermal alteration mapping in spectral ratio feature space using TM reflectance data: Aurora Mining District, Mineral County, Nevada. In The 7th thematic conference on remote sensing exploration geology, Calgary, Alberta, Canada, 1989, conference proceedings (pp. 1189–1205).

  • Rokos, D., Argialas, D., Mavrantza, R., St.-Seymour, K., Vamvoukakis, C., Kouli, M., et al. (2000). Structural analysis for gold mineralization using remote sensing and geochemical techniques in a GIS environment: Island of Lesvos, Hellas. Natural Resources Research, 9, 277–293.

    Article  Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.

    Article  Google Scholar 

  • Roy, D. P., Qin, Y., Kovalskyy, V., Vermote, E. F., Egorov, J. J., Hansen, M. C., et al. (2014). Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sensing of Environment, 140, 433–449.

    Article  Google Scholar 

  • Ryall, W. R., & Taylor, G. F. (1981). Gossan evaluation manual for use in the Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources, Technical Record, RF-TR-01-3.

  • Sabins, F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.

    Article  Google Scholar 

  • Sangster, D. F., & Abdulhay, G. J. S. (2005). Base metal (Cu–Pb–Zn) mineralization in the Kingdom of Saudi Arabia. Jeddah: Saudi Geological Survey.

    Google Scholar 

  • Sato, T. (1974). Distribution and geological setting of the Kuroko deposits. In Ishihara S (ed.). Geology of Kuroko Deposits. The Society of Mining Geologists of Japan, Special Issue, 6, 1–9.

  • Shahriari, H., Ranjbar, H., & Honarmand, M. (2013). Image segmentation for hydrothermal alteration mapping using PCA and concentration-area fractal model. Natural Resources Research, 22, 191–206.

    Article  Google Scholar 

  • Shahriari, H., Ranjbar, H., Honarmand, M., & Carranza, E. J. M. (2014). Selection of less biased threshold angles for SAM classification using the real value–area fractal technique. Resource Geology, 64, 301–315.

    Article  Google Scholar 

  • Shalaby, M. H., Bishta, A. Z., Roz, M. E., & Zalaky, M. A. (2010). Integration of geologic and remote sensing studies for the discovery of uranium mineralization in some granite plutons, Eastern Desert, Egypt. Journal of King Abdulaziz University: Earth Sciences, 21, 1–25.

    Google Scholar 

  • Singh, A., & Harrison, A. (1985). Standardized principal components. International Journal of Remote Sensing, 6, 883–896.

    Article  Google Scholar 

  • Soe, M., Kyaw, T. A., & Takashima, I. (2005). Application of remote sensing techniques on iron oxide detection from ASTER and Landsat images of Tanintharyi coastal area, Myanmar. Akita University Faculty of Engineering and Resource Science research report, 2, 21–28.

    Google Scholar 

  • Stacey, J. S., & Stoeser, D. B. (1983). Distribution of oceanic and continental leads in the Arabian-Nubian Shield. Contributions to Mineralogy and Petrology, 84, 91–105.

    Article  Google Scholar 

  • Stern, R. J. (1985). The Najd fault system, Saudi Arabia and Egypt: A late Precambrian rift-related transform system. Tectonics, 4, 497–511.

    Article  Google Scholar 

  • Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the assembly of Gondwanaland. Annual Reviews of Earth and Planetary Sciences, 22, 319–351.

    Article  Google Scholar 

  • Stoeser, D. B., & Camp, V. E. (1985). Pan-African microplate accretion of the Arabian Shield. Geological Society America Bulletin, 96, 817–826.

    Article  Google Scholar 

  • Stoeser, D. B., & Stacey, J. S. (1988). Evolution, U-Pb geochronology, and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian Shield. In S. El Gaby & R. Greiling (Eds.), The Pan-African belts of northeast Africa and Adjacent areas (pp. 227–288). Germany: Friedr Vieweg and Sohn.

    Google Scholar 

  • Taylor, G. F., & Thornber, M. R. (1992). Gossan and ironstone surveys. In C. R. M. Butt & H. Zeegers (Eds.), Regolith exploration geochemistry in tropical and subtropical terrains. Handbook of exploration geochemistry (Vol. 4, pp. 139–202). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Testard, J. (1983). Khnaiguiyah: A synsedimentary hydrothermal deposit comprising Cu–Zn–Fe sulfides and Fe-oxides in an ignimbritic setting. Saudi Arabian Deputy Ministry for Mineral Resources, Open-File Report, BRGM-OF-03-9.

  • Testard, J., Tegyey, M., Picot, P., Naury, M., & Kosakevitch, M. (1980). Khnaiguiyah; mineralization in an acid volcanosedimentary complex. King Abdulaziz University, Institute of Applied Geology Bulletin, 3, 79–98.

    Article  Google Scholar 

  • Unrug, R. (1988). Mineralization controls and source metals in the Lufilian Fold Belt, Shaba (Zaire), Zambia and Angola. Economic Geology, 83, 1247–1258.

    Article  Google Scholar 

  • Van der Meer, F. D., Van der Werff, H. M. A., Van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., et al. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128.

    Article  Google Scholar 

  • Vaslet, D., Delfour, J., Manivit, J., Le Nindre, Y. M., Brosse, J. M., & Fourniquet, J. (1983). Geologic map of the Wadi ar Rayn Quadrangle, sheet 23H, Kingdom of Saudi Arabia (with text). Saudi Arabian Deputy Ministry for Mineral Resources, Jeddah, Geosciences Map, GM-63A.

  • Viland, J. C. (1986). Assessment for gold in the Zalim area, central Arabian Shield: Review of BRGM work. Saudi Arabian Deputy Ministry for Mineral Resources, Open-File Report, BRGM-OF-06-11.

  • Vincent, R. K. (1997). Fundamentals of geological and environmental remote sensing. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Volesky, J. C., Stern, R. J., & Johnson, P. R. (2003). Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 123, 235–247.

    Article  Google Scholar 

  • Wang, G., Du, W., & Carranza, E. J. M. (2017). Remote sensing and GIS prospectivity mapping for magmatic-hydrothermal base- and precious-metal deposits in the Honghai district, China. Journal of African Earth Sciences, 128, 97–115.

    Article  Google Scholar 

  • Zeinalov, G. A. (2000). Importance of remote-sensing data in structural geologic analysis of oil- and gas-bearing regions of Azerbaijan. Natural Resources Research, 9, 307–313.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by King Saud University, Deanship of Scientific Research, Research Group No. (RG-1436-036). We are indebted to Othman Turkey for field work assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habes Ghrefat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlan, H., Ghrefat, H. Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia. Nat Resour Res 27, 109–124 (2018). https://doi.org/10.1007/s11053-017-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9341-8

Keywords

Navigation