Skip to main content
Log in

Evaluation of the Compressibility Parameters of Soils Using Soft Computing Methods

  • STRUCTURAL PROPERTIES OF SOILS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

The compressibility parameters such as the compression index and the recompression index are necessary in the settlement calculation for fine-grained soils that is essential to geotechnical designs. However, determination of the compressibility parameters from odometer tests takes a relatively long time and leads to a very demanding experimental working program in the laboratory. Geotechnical engineering literature involves many studies based on multiple regression analysis (MLR). This study was aimed at predicting the compressibility parameters by soft computing methods such as artificial neural networks (ANN) and the quasi-Newton algorithm developed with the differential evolution method (QN-DE). The selected variables for each method are the index parameters of natural finegrained soils such as natural water content and initial void ratio. The results obtained from MLR, ANN, and QN-DE models were compared with each other at the end of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Skempton, "Notes on the compressibility of clays," Q. J. Geol. Soc. London, 100(1-4), 119-135 (1944).

    Article  Google Scholar 

  2. K. Terzaghi and R. B. Peck, Soil Mechanics in Engineering Practice, 2nd ed, John Wiley & Sons Inc., New York (1967).

    Google Scholar 

  3. A. S. Azzouz, R. J. Krizek, and R. B. Corotis, "Regression analysis of soil compressibility," Soils Found., 16(2), 19-29 (1976).

    Article  Google Scholar 

  4. T. S. Nagaraj and B. R. Srinivasa Murthy, "Prediction of the preconsolidation pressure and recompression index of soils," Geotech. Test. J., 8(4), 199-202 (1985).

    Article  Google Scholar 

  5. M. A. Lav and M. A. Ansal, "Regression analysis of soil compressibility," Turk. J. Eng. Environ. Sci., 25, 101-109 (2001).

    Google Scholar 

  6. G. L. Yoon, B. T. Kim, and S. S. Jeon, "Empirical correlations of compression index for marine clay from regression analysis," Can. Geotech. J., 41, 1213-1221 (2004).

    Article  Google Scholar 

  7. H. I. Park and S. R. Lee, "Evaluation of the compression index of soils using an artificial neural network," Comput. Geotech., 38(4), 472-481 (2011).

    Article  Google Scholar 

  8. W. Bae and T. Y. Heo, "Prediction of compression index using regression analysis of transformed variables method," Mar. Georesour. Geotech., 29(1), 76-94 (2011).

    Article  Google Scholar 

  9. F. Kalantary and A. Kordnaeij, "Prediction of compression index using artificial neural network," Sci. Res. Essays, 7(31), 2835-2848 (2012).

    Google Scholar 

  10. B. Tiwari and B. Ajmera, "New correlation equations for compression index of remolded clays," J. Geotech. Geoenviron. Eng., 138(6), 757-762 (2012).

    Article  Google Scholar 

  11. C. Lee, S. J. Hong, D. Kim, and W. Lee, "Assessment of compression index of Busan and Incheon clays with sedimentation state," Mar. Georesour. Geotech., 33(1), 23-32 (2015).

    Article  Google Scholar 

  12. H. MolaAbasi, I. Shooshpasha, and A. Ebrahimi, "Prediction of the compression index of saturated clays using polynominal models," Sci. Iran. A, 23(2), 500-507 (2016).

    Google Scholar 

  13. I. Lee and J. Lee, "Prediction of pile bearing capacity using artificial neural networks," Comput. Geotech., 18(3), 189-200 (1996).

    Article  Google Scholar 

  14. M. G. Sakellariou and M. Ferentinou, "A study of slope stability prediction using neural networks," Geotech. Geol. Eng., 24(3), 419-445 (2005).

    Article  Google Scholar 

  15. Y. S. Kim and B. T. Kim, "Use of artificial neural networks in the prediction of liquefaction resistance of sands," J. Geotech. Geoenviron. Eng., 132(11), 1502-1504 (2006).

    Article  Google Scholar 

  16. Y. L. Kuo, M. B. Jaksa, A. V. Lyamin, and W. S. Kaggwa, "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil," Comput. Geotech., 36(3), 503-516 (2009).

    Article  Google Scholar 

  17. M. H. Bagheripour, I. Shooshpasha, and M. Afzalirad, "A genetic algorithm approach for assessing soil liquefaction potential based on reliability method," J. Earth Syst. Sci., 121(1), 45-62 (2012).

    Article  Google Scholar 

  18. M. H. Baziar, A. Kashkooli, and A. Saeedi-Azizkandi, "Prediction of pile shaft resistance using cone penetration tests (CPTs)," Comput. Geotech., 45, 74-82 (2012).

    Article  Google Scholar 

  19. A. Demir, "New computational network models for better predictions of the soil compression index," Acta Geotech. Slov., 12(1), 59-69 (2015).

    Google Scholar 

  20. H. Bolton, G. Heymann, and A. Groenwold, "Global search for critical failure surface in slope stability analysis," Eng. Optim., 35(1), 51-65 (2003).

    Article  Google Scholar 

  21. A. R. Zolfaghari, A. C. Heath, and P. F. Mc Combie, "Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis," Comput. Geotech., 32, 139-152 (2005).

    Article  Google Scholar 

  22. Y. M. Cheng, "Global optimization analysis of slope stability by simulated annealing method with dynamic bounds and Dirac function," Eng. Optim., 39(1), 17-32 (2007).

    Article  Google Scholar 

  23. Y. M. Cheng, L. Li, S. Chi, and W. B. Wei, "Particle swarm optimization algorithm for location of critical non-circular failure surface in two dimensional slope stability analysis," Comput. Geotech., 34(2), 92-103 (2007).

    Article  Google Scholar 

  24. X. Liu, G. Cheng, B. Wang, and S. Lin, "Optimum design of pile foundation by automatic grouping genetic algorithms," ISRN Civ. Eng., 2012, (678329), 1-16 (2012).

    Google Scholar 

  25. K. Nakanishi and I. Takewaki, "Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm," Geomech. Eng., 5(6), 519-540 (2013).

    Article  Google Scholar 

  26. W. Zhao, Z. Xu, and J. Zheng, "Optimization design of piles subjected to horizontal loads based on reliability theory," J. Cent. South Univ., 21(7), 2928-2934 (2014).

    Article  Google Scholar 

  27. B. Zhao, L. Zhang, D. Jeng, J. Wang, and J. Chen, "Inverse analysis of deep excavation using differential evolution algorithm," Int. J. Numer. Anal. Methods, 39, 115-134 (2015).

    Article  Google Scholar 

  28. U. Dagdeviren and B. Kaymak, "Optimum design of reinforced concrete retaining walls using artificial bee colony algorithm," Int. Conf. Civ. Environ. Eng., Nevsehir, Turkey, 1171-1180 (2015).

  29. K. Seitz and J. Grabe, "Three-dimensional topology optimization for geotechnical foundations in granular soil," Comput. Geotech., 80, 41-48 (2016).

    Article  Google Scholar 

  30. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed, Prentice Hall, New Jersey (1999).

    Google Scholar 

  31. G. Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with artificial neural networks: the state of the art," Int. J. Forecast., 14(1), 35-62 (1998).

    Article  Google Scholar 

  32. O. Yildiz, "Using artificial neural networks for forecasting USD exchange rates," M.Sc. thesis, Eskisehir Osmangazi University, Eskisehir, Turkey [in Turkish] (2006).

  33. H. Aygoren, H. Saritas, and T. Morali "Forecasting ISE 100 indice using artificial neural networks and Newton numerical search models," Int. J. Alanya Faculty Business, 4(1), 77-78 (2012).

    Google Scholar 

  34. D. Ozgen, " Artificial neural network analyze and Turkish financial marketing: application of IMKB 30 index," M.Sc. thesis, Marmara University, Istanbul, Turkey (2007).

  35. G. Ocakoglu, " Logistic regression analysis and comparison of classification characteristics of artifical nueural network techniques and an application," M.Sc. thesis, Uludag University, Bursa, Turkey (2006).

  36. R. Storn and K. Price, "Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces," Technical Report TR-95-012, International Computer Science Institute, Berkeley (1995).

  37. R. Storn, "On the usage of differential evolution for function optimization," Proc. Biennial Conf. North Am. Fuzzy Inform. Process Soc., Berkeley, 519-523 (1996).

  38. R. Schoenberg, Optimization with the Quasi-Newton Method, Aptech Systems, Inc., Maple Valley (2001).

  39. E. M. Gertz, "A quasi-Newton trust-region method," Math. Program Ser. A, 100, 447-470 (2004).

    Google Scholar 

  40. M. Fallgren, "On the robustness of conjugate-gradient methods and quasi-Newton methods," M.Sc. thesis, Royal Institute of Technology, Stockholm, Sweden (2006).

  41. Auto2fit, "CPC-X Software," http://www.geocities.com/neuralpower.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 3, p. 17, May-June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdeviren, U., Demir, A.S. & Kurnaz, T.F. Evaluation of the Compressibility Parameters of Soils Using Soft Computing Methods. Soil Mech Found Eng 55, 173–180 (2018). https://doi.org/10.1007/s11204-018-9522-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-018-9522-4

Navigation