Skip to main content
Log in

Trace element contents and C-O isotope geochemistry of the different originated magnesite deposits in Lake District (Southwestern Anatolia), Turkey

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Vein-stockwork magnesite in the Madenli area, sedimentary huntite-magnesite in the Aşağıtırtar area, and lacustrine hydromagnesite in the Salda Lake area are located in the Beyşehir-Hoyran and Lycian nappe rocks around Isparta and Burdur, Southwest Anatolia. The aim of this study is to understand trace element contents and carbon-oxygen isotope ratios in different originated magnesite, magnesite bearing huntite, and hydromagnesite deposits. Also, the element contents and isotope ratios of the magnesite occurrences are to compare with each other and similar magnesite occurrences in Turkey and world. It is found that the Madenli magnesite occurrences in the Şarkikaraağaç ophiolites, Aşağıtırtar magnesite bearing huntite deposits in the lacustrine rocks of the Miocene-Pliocene, and the Salda hydromagnesite deposits in lacustrine basin on the Yeşilova ophiolites. The paragenesis contains a common carbonate mineral magnesite, less calcite, serpentine, smectite, dolomite, and talc in the Madenli magnesite occurrences, mostly huntite and locally magnesite, dolomite, calcite, illite, quartz, and smectite in the Aşağıtırtar huntite-magnesite occurrences, and only hydromagnesite mineral in the Salda Lake hydromagnesite occurrences. Vein and stockwork Madenli magnesite deposits were recognized by higher total iron oxide concentrations (mean 1.10 wt%) than sedimentary Aşağıtırtar magnesite bearing huntite (mean 0.13 wt%) and lacustrine Salda hydromagnesite (mean 0.22 wt%) deposits. It is suggested that high Fe content (up to 5%) in the magnesite associated with ultramafic rocks than those from sedimentary environments (≤1% Fe). Based on average Ni, Co, Ba, Sr, As and Zr contents in the magnesite deposits, average Ni (134.63 ppm) and Co (15.19 ppm) contents in the Madenli magnesite and Salda hydromagnesite (36.85 ppm for Ni, 3.15 ppm for Co) have higher values than Aşağıtırtar huntite + magnesite (7.67 ppm for Ni and 0.89 ppm for Co). Average Ni-Co contents of these deposits can have close values depending on ophiolite host rock. Average Ba values of the Madenli (108.09 ppm) and Aşağıtırtar (115.88 ppm) areas are higher than those of Salda hydromagnesite (13.15 ppm). Sediment-hosted Aşağıtırtar magnesite-huntite deposits have the highest Sr contents (mean 505.81 ppm) as reasonably different from ultrabasic rock-related Madenli magnesite (mean 38.76 ppm) and Salda hydromagnesite (mean 36.70 ppm). The highest Sr content of sedimentary Aşağıtırtar deposits reveals that Sr is related to carbonate rocks. As and Zr contents have the highest average values (As 52.76 ppm and Zr 9.67 ppm) in the Aşağıtırtar deposits different from Madenli magnesite (As 0.54 ppm and Zr 1.67 ppm) and Salda hydromagnesite (As 0.5 ppm and Zr 2.58 ppm) deposits. High As and Zr concentrations in the Aşağıtırtar magnesite-huntite deposits may come from volcanic rocks in near country rocks. The δ 13C (PDB) isotope values vary between −10.1 and −11.4‰ in the Madenli magnesite, 7.8 to 8.8‰ for huntite, 1.7 to 8.3‰ for huntite + magnesite and 4.0‰ for limestone + magnesite in the Aşağıtırtar huntite-magnesite deposits, and 4.4 to 4.9‰ for Salda Lake hydromagnesite. The sources of the CO2 are hydrothermal solutions, meteoric waters, groundwater dissolved carbon released from fresh water carbonates and marine limestone, soil CO2, and plant C3 in the Madenli magnesite, and may be deep seated metamorphic reactions in limestone and shales of rich in terms of organic matter. The sources of CO2 in Aşağıtırtar huntite and Salda hydromagnesite were meteoric water, groundwater dissolved inorganic carbon, fresh water carbonates, and marine limestone. The δ 18O (SMOW) isotope composition ranges from 26.8 to 28.1‰ in the Madenli magnesite, 30.4 to 32.4‰ for huntite and 29.8 to 35.5‰ for huntite + magnesite and 26.9‰ for limestone + magnesite in the Aşağıtırtar area, and 36.4 to 38.2‰ in the Salda Lake hydromagnesite. The Salda Lake hydromagnesite has heavier oxygen isotopic values than others. The sources of oxygen in the Madenli magnesite deposits are hydrothermal solutions, meteoric water, freshwater carbonates, and marine limestone, but the sources of oxygen of the Aşağıtırtar magnesite-huntite are meteoric water, fresh water carbonates, and marine limestone. The Salda Lake hydromagnesite has very high δ18O isotope values indicating a strong evaporitic environment. Magnesium (Mg+2) and silica are released by disintegration of very weathered-serpentinized ultrabasic rocks of all magnesite deposits and from partly dolomite and dolomitic limestone in the Aşağıtırtar magnesite bearing huntite deposits. In the Aşağıtırtar area, calcium (Ca+2) for huntite mineralization is provided by surrounding carbonate rocks. Based on isotopic data, host rocks, petrographic properties of the Madenli magnesite can be described as an ultramafic-associated hydrothermal vein mineralization corresponding to “Kraubath type” deposits, but Aşağıtırtar ve Salda Lake deposits are sedimentary mineralization (lacustrine/evaporitic) corresponding to “Bela Stena type” deposits. The estimated temperature using average δ18O isotope values is about 33.51 °C for Madenli magnesite, 48.33 °C for Aşağıtırtar huntite-magnesite, and 25 °C for Salda hydromagnesite. Based on isotope data, we can be say that the Madenli magnesite, Aşağıtırtar magnesite-huntite, and Salda hydromagnesite occur at low to moderate-low temperature water and alkaline (pH 8.5–10.5) under surface or near-surface conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Jaber N, Kimberley MM (1992) Origin of ultramafic-hosted Magnesite on Margarita Island. Venezuela, Mineralium Deposita 27:234–241

    Article  Google Scholar 

  • Aharon P (1988) A stable isotope study of magnesite from the rum jungle uranium field, Australia: implications for the origin of strata-bound massive magnesite. Chem Geol 69:127–145

    Article  Google Scholar 

  • Akay E, Uysal Ş (1988) Stratigraphy, sedimentology and structural geology of the Neogene sediments in the west of the central Taurus (Antalya).MTA report no: 7799, 277 (unpublished), Ankara

  • Alçiçek MC (2007) Tectonic development of an orogen–top rift recorded by its terrestrial sedimentation pattern: the Neogene Eşen Basin of southwestern Anatolia, Turkey. Sediment Geol 200:117–140

    Article  Google Scholar 

  • Alçiçek H (2009) Late Miocene nonmarine sedimentation and formation of magnesites in the Acıgol Basin, southwestern Anatolia, Turkey. Sediment Geol 219:115–135

    Article  Google Scholar 

  • Alçiçek H (2010) Stratigraphic correlation of the Neogene basins in southwestern Anatolia: regional palaeogeographical, palaeoclimatic and tectonic implications. Palaeogeogr Palaeoclimatol Palaeoecol 291:297–318

    Article  Google Scholar 

  • Alçiçek MC, Ten Veen JH (2008) The late early Miocene Acıpayam piggy back-basin: refining the last stages of Lycian nappe emplacement in SW Turkey. Sediment Geol 208:101–113

    Article  Google Scholar 

  • Alçiçek MC, Kazancı N, Ozkul M (2005) Multiple rifting pulses and sedimentation pattern in the Cameli Basin, southwestern Anatolia, Turkey. Sediment Geol 173:409–431

    Article  Google Scholar 

  • Bashir E, Naseem S, Akhtar T, Shireen K (2009) Characteristics of ultramafic rocks and associated magnesite deposits, Nal area, Khuzdar, Baluchistan, Pakistan. J Geol Mining Res 1:034–041

  • Bernoulli D, Graciansky PCDE, Monod O (1974) The extension of the Lycian nappes (SW Turkey) into the southwestern Aegean islands. Eclogae Geol Helv 67:39–90

    Google Scholar 

  • Bilgin ZR, Karaman T, Öztürk Z, Şen MA, Şenel M (1990) Geology of Yeşilova-Acıgöl area MTA rap no: 9071, Ankara

  • Blumenthal MM (1951), Batı Toroslarda Alanya ard ülkesinde jeolojik araştırmalar. Maden Tetkik Arama Enstitüsü, Ankara, 194 pp

  • Boschi C, Dini A, Dallai L, Ruggieri G, Gianelli G (2009) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem Geol 265:209–226

    Article  Google Scholar 

  • Botz R, Von Der Borch CC (1984) Stable isotope study of carbonate sediments from the Coorong area, South Australia. Sedimentology 31:837–849

  • Braithwaite CJR, Zedef V (1994) Living hydromagnesite stromatolites from Turkey. Sediment Geol 92:1–5

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1996b) Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Gölü, Turkey. J Sediment Res 66:991–1002

    Google Scholar 

  • Brydie JR, Fallick AE, Ilich M, Maliotis G, Russell MJ (1993) A stable isotopic study of magnesite deposits in the Akamas area, N.W. Cyprus. Institution of Mining and Metallurgy Transactions 102:50–53

    Google Scholar 

  • Chacko T, Deines P (2008) Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim Cosmochim Acta 72:3642–3660

    Article  Google Scholar 

  • Ciftci NB, Bozkurt E (2010) Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Res 22:846–873

    Google Scholar 

  • Dabitzias SG (1980) Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki peninsula, northern Greece. Econ Geol 75:1138–1151

    Article  Google Scholar 

  • Demirkol C (1984) geology and tectonics of the region south of Çay (Afyon): geology of the Taurus belt (Ed. By O. Tekeli and C. Göngüoğlu), 69-75, mineral research and exploration institute, Ankara

  • Denies P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Et Cosmochim Acta 44:943–961

    Article  Google Scholar 

  • Dulski P, Morteani G (1989) Magneite formation by CO2 metasomatism during regional metamorphism of the ultrabasic rock of the Ochsner serpentinite (Zillertaler alpen, Tyrol, Austria). Monograph Series Mineral Deposits 28:95–104

    Google Scholar 

  • Ece ÖI, Matsubaya O, Çoban F (2005) Genesis of hydrothermal stockwork-type magnesite deposits associated with ophiolite complexes in the Kütahya-Eskişehir region, Turkey. Neues Jahrbuch für Mineragie Abhandlungen 181(2):191–205

    Article  Google Scholar 

  • Fallick AE, Ilich M, Russell MJ (1991) A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. Econ Geol 86:847–861

    Article  Google Scholar 

  • Frank TD, Fielding CR (2003) Marine origin for Precambrian, carbonate-hosted magnesite? Geology 31:1101

    Article  Google Scholar 

  • Gartzos E (1990) Carbon and oxygen isotope constrains on the origin of magnesite deposits, north Evia (Greece). Schweiz Miner und Petrog Mitteilungen 70:67–72

    Google Scholar 

  • Gartzos E. (2004). Comparative stable isotopes study of the magnesite deposits of Greece. Bulletin of the Geological Society of Greece pp 196–203

  • Glover CP, Robertson AHF (1998) Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. Geol. Soc. London,155: 365–387

  • Golyshev SI, Padalko NL, Pechenkin SA (1981) Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geokhimiya 10:1427–1441

    Google Scholar 

  • Gundoğan İ, Helvacı C, Sozbilir H (2008) Gypsiferous carbonates at Honaz Dağı (Denizli): first documentation of Triassic gypsum in western Turkey and its tectonic significance. J Asian Earth Sci 32:49–65

    Article  Google Scholar 

  • Gutnic M, Keller D, Monod O (1968) Decouverte de nappes de charriage dans le nord du Taurus occidental (Turquie mSridionale) 226: 988–901

  • Helvacı C, Alçiçek MC, Gündoğan İ, Gemici Ü (2013) Tectonosedimentary development and palaeoenvironmental changes in the Acıgöl shallow-perennial playa-lake basin, SW Anatolia, Turkey. Turkish J Earth Sci 22:173–190

    Google Scholar 

  • Herrero MJ, Martín-Pérez A, Alonso-Zarza AM, Gil-Peña I, Meléndez A, Martín-García R (2011) Petrography and geochemistry of the magnesites and dolostones of the Ediacaran Ibor group (635 to 542 ma), western Spain: evidences of their hydrothermal origin. Sediment Geol 240:71–84

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin Heidelberg

    Google Scholar 

  • Jedrysek MO, Halas S (1990) The origin of magnesite deposits from the polish Foresudetic block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova 2:154–159

    Article  Google Scholar 

  • Jurkovic I, Palinkas LA, Garasic V, Strmic Palinkas S (2012) Genesis of vein-stockwork cryptocrystalline magnesite from the Dinaride ophiolites. Ofioliti 37:13–26

    Google Scholar 

  • Kadir S, Kolaylı H, Eren M (2011) Genesis of sedimentary- and vein-type magnesite deposits at Kop Mountain, NE Turkey. Turkish J Earth Sci 22:98–114

    Google Scholar 

  • Kahya A, Kuscu M (2014) Source of the mineralizing fluids in ultramafic related magnesite in the Eskişehir area, northwest Turkey, along the İzmir–Ankara suture: a stable isotope study. Turk J Earth Sci 23:1–15

    Article  Google Scholar 

  • Kastens KA (1991) Responses to impending continent-continent collision in the Mediterranean: palisades, NY, Lamont-Doherty geological observatory. Unpublished report 1990–1991:24–32

  • Ketin I (1966) Tectonic units of Anatolia (Asia minor). Mineral Research and Exploration Institute of Turkey (MTA) Bulletion 66:23–34

    Google Scholar 

  • Koçyiğit A (1981) Evolution of Taurus carbonate platform in İsparta bend (western Taurus). Bull Geol Soc Turk 24:15–23

    Google Scholar 

  • Koçyiğit A (1983) Tectonics of the Hoyran Lake (Isparta bend) region. Bull Geol Soc Turk 26:1–10

    Google Scholar 

  • Kocyiğit A (2005) The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodin Acta 18:167–208

    Article  Google Scholar 

  • Koçyiğit A, Özacar AA (2003) Extensional Neotectonic regime through the NE edge of the outer Isparta angle, SW Turkey: new field and seismic data. Turkish J. Earth Sci 12:67–90

    Google Scholar 

  • Kralik M, Aharon P, Scroll E, Zachman D (1989) Carbon and oxygen isotope systematics of Magnesites: a review. Monograph Series on Mineral Deposits 28:197–223

    Google Scholar 

  • Krupenin MT (2002) Comparison of lower and middle Riphean sparry magnesite deposits of the southern Urals province. Spec Iss Bol Paran Geoci 50:43–50

    Google Scholar 

  • Kuşcu M, Cengiz O (2004) Geochemical properties of different genesis magnesite deposits in the Lake district (Isparta-Burdur) of Turkey, Proceedings of 5th International Symposium on Eastern Mediterranean Geology, 14–20 April 2003, Greece, V.3, pp1601–1604

  • Kuşcu M, Cengiz O (2005) Interpretation the origins of Tırtar ve Madenli magnesite ocurrencess by δ18O and δ13C isotope ratios, SDÜ research found 03-M-757 project conclusion report s. 62

  • Kuşcu M, Cengiz O (2012) Origin of sediment-hosted huntite deposits in the Eğirdir-Hoyran Lake Basin of southern Turkey: element contents and stable isotope study international, multidisciplinary 12th sciences GeoConference SGEM 2012. Congerence Proceedings Geology, Exploration and Mining, Bulgaria, pp 1/197–1/208

    Google Scholar 

  • Lesko I (1972) Über die Bildung von Magnesitlagerstätten: Mineralium Deposita 7:61–72

    Google Scholar 

  • Melezkih VA, Fallick AE, Medvedev PV, Makarikhin VV (2001) Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology 48:379–397

    Article  Google Scholar 

  • Mirnejad H, Ebrahim Nasrabadi E, Lalonde AE, Taylor BE (2008) Mineralogy, stable isotope geochemistry and paragenesis of magnesite deposits from the ophiolite belt of eastern Iran. Econ Geol 103:1703–1713

    Article  Google Scholar 

  • Mirnejad H, Aminzadeh M, Ebner F, Unterweissacher T (2015) Geochemisrty and origin of the ophiolite hosted magnesite deposits at Derakht-Senjed, NE Iran. Miner Petrol 109:693–704

    Article  Google Scholar 

  • Önal G. (2007) Geochemical Invesitigatin of Magnesite Deposits in the Meram-Çayırbağı (Konya) and Sarıkavak (Mersin). Master Thesis, Çukurova University

  • O’Neil JR, Barnes I (1971) 13C and 18O composition in some freshwater carbonate associated with ultramafic rocks: western United States. Geoch et Cosmo Acta 35:687–697

    Article  Google Scholar 

  • Oskierski HC, Bailey JG, Kennedy EM, Jacobsen G, Ashley PM, Dlugogorsk BZ (2013) Formation of weathering-derived magnesite deposits in the New England Orogen, new South Wales, Australia: implications from mineralogy, geochemistry and genesis of the Attunga magnesite deposit. Mineral Deposita 48:525–541

    Article  Google Scholar 

  • Piper JDA, Gursoy H, Tatar O, Isseven T, Kocyigit A (2002) Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta angle, southern Turkey, Geol. J 37(4):317–336

    Google Scholar 

  • Pohl W (1989) Comparative geology of magnesite deposits and occurrences, Monograph Series on Mineral Deposits, vol. 28, in: P. Möller, Editor, Magnesite—Geology, Mineralogy, Geochemistry, Formation of Mg-Carbonates. Gebr. Borntraeger Verlagsbuchhandlung, Science Publishers, Stuttgart (1989), pp. 1–13

  • Poisson A (1977) Recherches geologiques dans les Taurides occidentales (Turquie). Ph.D. Thesis, L’Universite de Paris-Sud (Centre D’orsay), 795 pp

  • Prasannakumar V, Vikas C, Kumar SN (2002) Constraints on the origin of south Indian magnesite deposits. Bol Parana Geociênc 50:15–20

    Google Scholar 

  • Purvis M, Robertson AHF (2005a) Sedimentation of the Neogene–recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sediment Geol 173:373–408

    Article  Google Scholar 

  • Purvis M, Robertson AHF (2005b) Miocene sedimentary evolution of the NE-SW-trending Selendi and Gordes basins, W Turkey: implications for extensional process. Sediment Geol 174:31–62

    Article  Google Scholar 

  • Robertson AHF, Dixon JE (1984) Introduction: aspects of the geological evolution of the eastern Mediterranean. In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean, Geological Society of London, special publication, vol 17, pp 1–74

    Google Scholar 

  • Russell MJ (1993) The origin of minerals and life at hot springs: Irish Association for Economic Geology Annual Review, p. 20–23

  • Sarıkaya AR, Seyrek T (1976) Chromium and nickel enrichment prospecting report of Yeşilova-Tefenni Peridotite massif, MTA rap no: 5764. Ankara

  • Sarp H (1976) Etude geologique et mineralogique du cortege ophiolitique de la region situee au nord-ouest de Yeilova (Burdur-Turqie): Unpublished Ph.D. thesis, Geneve, Universite de Geneve 143 p

  • Savasçın MY, Oyman T (1998) Tectono-magmatic evolution of alkaline volcanics at the Kırka-Afyon-Isparta structural trend, SW Turkey. Turk J Earth Sci 7:201–214

    Google Scholar 

  • Schmid IH (1987) Turkey’s Salda Lake, a genetic model for Australia’s newly discovered magnesite deposits: industrial minerals, p. 19–31

  • Schroll E (2002) Genesis of magnesite deposits in the view of isotope geochemistry. Boletim paranaense de geociencias 50:59–68

    Google Scholar 

  • Şenel M (1983) Discussion on the Antalya nappes: geology of the Taurus belt Int. Symp., 41–51

  • Şenel M, Dalkılıç H, Gedik L, Sedaroğlu M, Bilgin AZ, Uğuz MF, Bölükbaşı S, Korucu M, Özgül N (1996) İsparta büklümü doğusunda, otokton ve alloktaon birimlerin stratigrafisi (Batı Toroslar). MTA Derg 118:111–160

    Google Scholar 

  • Şengor AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  • Şengor AMC, Gorur N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation, Society of economic paleontologists and mineralogists, special publication, vol 37, pp 227–264

    Google Scholar 

  • Sozbilir H (2005) Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodin Acta 18:255–282

    Article  Google Scholar 

  • Stamakis MG (1995) Occurrence and genesis of huntite-hydromagnesite assemblages. Kozani, Greece- important new white fillers and extenders, Technical notes in The Institution of Mining and Metallurgy, pp:179–186

  • Taymaz T, Price S (1992) The 1971 may 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophysical Journal International-Oxford 108:598–603

    Google Scholar 

  • Ten Veen JH, Boulton SJ, Alcicek MC (2009) From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics 473:261–281

    Article  Google Scholar 

  • Thuizat R, Whitechurch H, Montigny R, Juteau T (1981) K–Ar dating of some infra-ophiolitic metamorphic soles from the eastern Mediterranean: new evidence for oceanic thrusting before obduction. Earth Planetary Science Letters 52:302–310

    Article  Google Scholar 

  • Tuncay A. (2000) On the Origin of the Çayırbağ-Meram (Konya) Magnesite Deposits. Geological Bulletin of Turkey 43(2):21–31

  • Woodcock NH, Robertson AHF (1981) Wrench and thrusting in Turkey. In: McClay KR, Price NJ (eds) Thrust and Nappe tectonics, Special publication, geological society London, vol 9, pp 359–362

    Google Scholar 

  • Zachmann DW, Johannes W (1989) Cryptocrystalline magnesite. In: Magnesite Geology, Mineralogy, Geochemistry and Formation of Mg-Carbonates. Monograph Series on mineral deposits 28 (Ed. By. P. Möller): 15–28

  • Zanchi A, Kissel C, Tapırdamaz C (1993) Late Cenozoic and quaternary brittle continental deformation in western Turkey. Bulletin de la Société Géologique de France 164:507–517

    Google Scholar 

  • Zedef V (1994) The origin of magnesite in Turkey, a stable isotope study: Unpublished Ph.D. thesis, Glasgow, UK, Glaskow University, 159p

  • Zedef V, Russell MJ, Fallick AE (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Econ Geol 95:429–446

    Article  Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulphate minerals. Geochem J 33:109–126

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Research Projects Coordination Unit of Suleyman Demirel University (SDU), Project No. 03-M-757, Turkey. The authors are indebted to the Scientific Research Projects Coordination Unit of SDU, Turkey, and also thanks the anonymous referees for their constructive and very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kuşcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuşcu, M., Cengiz, O. & Kahya, A. Trace element contents and C-O isotope geochemistry of the different originated magnesite deposits in Lake District (Southwestern Anatolia), Turkey. Arab J Geosci 10, 339 (2017). https://doi.org/10.1007/s12517-017-3102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3102-1

Keywords

Navigation