Skip to main content
Log in

Impact-generated carbonate melts in the Talemzane impact structure (Laghouat, Algeria)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The 1750-m-diameter, bowl-shaped Talemzane impact structure in Algeria is emplaced in Senonian or Eocene flint-bearing limestones. Field studies reveal a thin layer of light-colored polymict breccia with rounded, dark inclusions beneath a limestone megablock zone located at the top of the crater rim. The matrix of the rounded, dark inclusions consists of Si-rich glass and microcrystalline calcite. The latter is characterized by high contents of Si and Al suggesting rapid crystallization of the calcite from a melt. Backscattered electron imagery shows textural evidence for liquid immiscibility between the CaCO3-rich and Si-rich glass of the matrix in the form of intermingling of calcite with Si-rich glass, coalesced blebs within silicate glass, individual calcite blebs within Si-rich glass, carbonate spherical globules in fresh Si-rich-glass, and sharp menisci between silicate and calcite blebs. These features are interpreted as evidence of impact melting of limestone and flint. The low totals of the Si-Al-Mg-rich glasses suggest that they contain significant amounts of volatiles. X-ray diffraction analyses indicate partial alteration of the Si-Mg-Al-rich glass to phyllosilicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrinier P, Deutsch A, Schärer U, Martinez I (2001) Fast backreactions of shock-released CO2 from carbonates: an experimental approach. Geochim Cosmochim Acta 65:2615–2632

    Article  Google Scholar 

  • Baratoux D, Melosh HJ (2003) The formation of shatter cones by shock interference during impacting. Earth Planet Sci Lett 216:43–54

    Article  Google Scholar 

  • Belhai D, Merle O, Vincent P, Devouard B, Afalfiz A (2006) Etat des connaissances et mise au point sur les cratères météoritiques du Sahara algérien, des indications de pièges à hydrocarbures? Bulletin du Service Géologique de 1 ‘Algérie 17:95–112

    Google Scholar 

  • Boslough MB, Ahrens TJ, Vizgirda J, Becker RH, Epstein S (1982) Shock-induced devolatilization of calcite. Earth Planet Sci Lett 61:166–170

    Article  Google Scholar 

  • Brady LF (1954) The crater of Talemzane in Algeria. Sky and Telescope 297–298

  • Claeys P, Heuschkel S, Lounejeva-Baturina E, Sanchez-Rubio G, Stoeffler D (2003) The suevite of drill hole Yucatan 6 in the Chicxulub impact crater. Meteorit Planet Sci 38:1299–1317

    Article  Google Scholar 

  • Dietz RS (1968) Shatter cones in cryptoexplosion craters. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Maryland: Mono Book Corp, Baltimore, pp. 267–258

    Google Scholar 

  • Dressler BO, Reimold WU (2001) Terrestrial impact melt rocks and glasses. Earth-Sci Rev 56:205–284

    Article  Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites- an experimental study. Contrib Mineral Petrol 73:105–117

    Article  Google Scholar 

  • French B M (1998) Traces of catastrophe: a handbook of shock metamorphic effects in terrestrial meteorite impact structures Houston, Texas

  • Graup G (1999) Carbonate-silicate liquid immiscibility upon impact melting: Ries crater, Germany. Meteorit Planet Sci 34:425–438

    Article  Google Scholar 

  • Hörz F, Mittlefehldt DW, See TH, Galindo C (2002) Petrographic studies of the impact melts from meteor crater, Arizona. Meteorit Planet Sci 37:501–531

    Article  Google Scholar 

  • Hörz F, Archer PD, Niles PB, Zolensky ME, Evans M (2015) Devolatilization or melting of carbonates at meteor crater, AZ? Meteorit Planet Sci 50:1050–1070

    Article  Google Scholar 

  • Ivanov BA, Deutsch A (2002) The phase diagram of CaCO3 in relation to shock compression and decompression. Phys Earth Planet Inter 129:131–143

    Article  Google Scholar 

  • Jones AP, Claeys P, Heuschkel S (2000) Impact melting of carbonates from the Chicxulub crater. In impacts and the early earth. In: Gilmour I, Koeberl C (eds) Lecture notes in earth sciences, vol 91. Springer-Verlag, Berlin, pp. 343–361

    Google Scholar 

  • Karpoff R (1953) The meteorite crater of Talemzane in southern Algeria. Meteoritics 1:31–38

    Article  Google Scholar 

  • Karpoff R (1954) Un cratère de «météorite» à Talemzane dans le Sud Algérien. Proceedings C.R.Congrès Geol. Intern. pp.233–241

  • Kieffer SW, Simonds CH (1980) The role of volatiles and lithology in the impact cratering process. Rev Geophys Space Phys 18:143–181

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In Carbonatites: Genesis and Evolution. Unwin Hyman, London. pp. 388–404

  • Koster van Groos AF, Wyllie PJ (1966) Liquid immiscibility in the system Na2O-Al2O3-SiO2-CO2 at pressures to 1 kilobar. Am J Sci 264:234–255

    Article  Google Scholar 

  • Lambert P, Mchone JE, Dietz RS, Houfani M (1980) Impact and impact-like structures in Algeria, part I, four bowl-shaped depressions. Meteoritics 15:157–179

    Article  Google Scholar 

  • Langenhorst F (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77:265–282

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York 245

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the cretaceous/tertiary extinction bolide and the resultant heating of the earth. Nature 338:247–249

    Article  Google Scholar 

  • Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth Planet Sci Lett 194:17–29

    Article  Google Scholar 

  • Osinski GR, Schwarcz HP, Smith J, Kleindienst MR, Haldemann AFC, Churcher CS (2007) Evidence for a 100–200 ka meteorite impact in western Egypt. Earth Planet Sci Lett 253:378–388

    Article  Google Scholar 

  • Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2008a) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43:1939–1954

    Article  Google Scholar 

  • Osinski GR, Grieve RAF, Spray JG (2008b) Impact melting in sedimentary target rocks: an assessment. In: Evans KR, Horton W, King Jr DK, Morrow JR, Warme JE (eds) GSA Special Publication 437The sedimentary record of meteorite impacts. Geological Society of America, Boulder, pp. 1–18

    Google Scholar 

  • Pratesi G, Morelli M, Rossi AP, Ori GG (2005) Chemical compositions of impact-melt breccias and target rocks from the Tenoumer impact crater, Mauritania. Meteoritics& Planetary Science 40:1653–1672

    Article  Google Scholar 

  • Reimold WU, Koeberl C (2014) Impact structures in Africa: a review. J Afr Earth Sci 93:57–175

    Article  Google Scholar 

  • Roedder E (1978) Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochim Cosmochim Acta 42:1597–1617

    Article  Google Scholar 

  • Skála R, (2002) Shock-induced phenomena in limestones in the quarry near Ronheim, the Ries Crater, Germany, Bulletin of the Czech Geological Survey 77: 313–320

  • Stöffler D (1977) Research drilling Nördlingen 1973: Polymictbreccias, crater basement, and cratering model of the Ries impact structure. Geologica Bavarica 75:443

  • Stöffler D, Grieve RAF (2007) Impactites. In: Fettes D, Desmons J (eds) Metamorphic rocks. Cambridge University Press, Cambridge, pp. 82–92

    Google Scholar 

  • Stöffler D, Artemieva NA, Wünnemann K, Reimold WU, Jacob J, Hansen BK, Summerson IA (2013) Ries crater and suevite revisited. Observations and modeling part I: observations. Meteorit Planet Sci 48:515–589

    Article  Google Scholar 

  • Treiman AH (1989) Carbonatite magma: properties and processes. In Carbonatites: Genesis and Evolution. Unwin Hyman, London. pp. 89–104

  • Wünnemann K, Collins GS, Osinski GR (2008) Numerical modelling of impact melt production on porous rocks. Earth and. Planet Sci 269:530–539

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Laboratoire de Géodynamique, de Géologie de l’Ingénieur et Planétologie (LGGIP), Université des Sciences et de Technologie Houari Boumedienne, Algiers, Algeria, and ISTeP, Paris, France. The authors thank the many individuals and institutions that have facilitated fieldwork at Talemzane structure. We are indebted to French. Bevan. M. for his critical and fruitful discussions that helped to improve the quality of this manuscript. We thank Kord Ernstson, for detailed and constructive review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sahoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoui, R., Belhai, D. & Jambon, A. Impact-generated carbonate melts in the Talemzane impact structure (Laghouat, Algeria). Arab J Geosci 9, 641 (2016). https://doi.org/10.1007/s12517-016-2665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2665-6

Keywords

Navigation