Skip to main content

Advertisement

Log in

Solute geothermometry of Cerro Prieto and Los Humeros geothermal fields, Mexico: considerations on chemical characteristics of thermal water

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A comprehensive study on the chemical considerations of thermal waters (springs and geothermal wells) on the performance of solute geothermometers in predicting the reservoir temperatures of Cerro Prieto and los Humeros geothermal fields of Mexico has been carried out. The reservoir temperatures from these thermal waters were calculated by applying all the available 28 solute geothermometers and the obtained temperatures were compared with the bottom hole temperatures (BHT) of the geothermal wells. Thermal waters of springs and geothermal wells of Cerro Prieto geothermal field (CPGF) are Cl type and majority of them are partially equilibrated. In the case of Los Humeros geothermal field (LHGF), spring waters are HCO3 type and all of them have indicated non-equilibrium conditions. Majority of the predicted reservoir temperatures by Na/K geothermometers from spring waters of CPGF and LHGF are within ±20 % differences compared to average BHTs, whereas estimated temperatures by all other solute geothermometers (non-Na/K) from spring waters of both the geothermal fields have shown wide differences (> ±20 %). In the case of geothermal well waters, majority of the reservoir temperatures estimated by only Na/K geothermometers from well waters of CPGF are within ±20 % differences and in the case of wells of LHGF, majority of the reservoir temperatures estimates by all solute geothermometers are having differences > ±20 %. The present study indicates the following: (1) only 3 geothermometers (out of 28) from spring waters of CPGF have predicted reservoir temperatures similar (statistically no significant differences) to the average of BHTs, although all springs are of Cl type; (2) different chemical characteristics of spring and well waters of CPGF and LHGF may be the result of the wide differences in the lithology of their reservoirs; (3) more number of solute geothermometers from non-equilibrated spring waters of CPGF and LHGF have predicted reliable reservoir temperatures than partially equilibrated waters; (4) In general, Na/K geothermometers have predicted more reliable reservoir temperatures from spring and well waters of both geothermal fields, when compared to other solute geothermometers; (5) the prediction of non-reliable reservoir temperatures by other than Na/K geothermometers may be the result of dilution/mixing of deep thermal waters with the meteoric surface waters; and (6) more number of geothermometers have predicted reliable reservoir temperatures from well waters in comparison to spring waters of both the studied geothermal fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong-Altrin JS (2015) Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev 57(11–12):1446–1461

    Article  Google Scholar 

  • Barragán RM, Nieva D, Santoyo E, González PE, Verma M, López J (1991) Geoquímica de fluidos del campo geotérmico de Los Humeros (México). Geotermia Rev Mex Cienc Geoener 7(1):24–48

    Google Scholar 

  • Bernard R, Taran Y, Pennisi M, Tello E, Ramirez A (2011) Chloride and boron behavior in fluid of Los Humeros geothermal field (México): a model based on the existence of deep acid brine. Appl Geochem 26(12):2064–2073

    Article  Google Scholar 

  • Burgos MIM (1999) Geochemical interpretation of thermal fluid discharge from wells and springs in Berlín geothermal field, El Salvador. The United Nations University, Geothermal Training Program, Orkustofnun, Grensásvegur 9, IS-108 Reykjavík, Iceland, Reports 1999, number 7, pp 165–191

  • Díaz-González L, Santoyo E, Reyes-Reyes J (2008) Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos. Rev Mex Cienc Geol 25:465–482

    Google Scholar 

  • Ellis A, Mahon W (1977) Chemistry and geothermal systems. Academic Press, New York, p 229–301

  • Fournier RO (1979) Geochemical and hydrological considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. J Volcanol Geotherm Res 5:1–46

    Article  Google Scholar 

  • García-López CG, Pandarinath K, Santoyo E (2014) Solute and gas geothermometry of geothermal wells: effectiveness for predicting deep reservoir temperatures by using geochemometric techniques. Int Geol Rev 56(16):2015–2049

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • González-Partida E, Levresse G, Santoyo E (2003) Paleo-fluid and actual-fluid in Los Azufres geothermal field, Central Mexico. J Geochem Explor 78–79C:67–70

    Article  Google Scholar 

  • Güileç N (1994) Geochemistry of thermal waters and its relation to the volcanism in the Kizilcahamam (Ankara) area, Turkey. J Volcanol Geotherm Res 59:295–312

    Article  Google Scholar 

  • Gupta HK, Roy S (2006) Geothermal energy—an alternative resource for the twenty-first century, First edn. Elsevier Science, Amsterdam, 292 p

  • Gutiérrez-Negrín LCA, Maya-González R, Quijano-León JL (2010) Current status of geothermics in Mexico. In: Proceedings of the 2010 World Geothermal Congress, Bali, Indonesia, April 25–30, 11 pp

  • Karingithi CW, (2009) Chemical geothermometers for geothermal exploration. UNU Geothermal Training Programme, Presented at Short Course IV on Exploration for Geothermal Resources, organized by UNU-GTP, KenGen and GDC, at Lake Naivasha, Kenya, pp 1–12.

  • Lippmann M, Truesdell AH, Halfman-Dooley SE, Mañon MA (1991) A review of the hydrologeological-geochemical model for Cerro Prieto. Geothermics 20(1/2):39–52

    Article  Google Scholar 

  • Manon A, Mazor E, Jimenez M, Sanchez A, Fausto J, Zenizo C (1977) Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. Report LBL-70 19, Lawrence Berkeley Laboratory, Berkeley, California, USA, 121 p

  • Martinez RG, Jacquier B, Arnold M (1996) The S34S composition of sulfates and sulfides at the Los Humeros geothermal system, Mexico and their application to physicochemical fluid evolution. J Volcanol Geotherm Res 73:99–118

    Article  Google Scholar 

  • Molina BR, Banwell CJ (1970) Chemical studies in Mexican geothermal fields. Geothermics 2(2):1377–1391

    Article  Google Scholar 

  • Pandarinath K (2011) Solute geothermometry of springs and wells of the Los Azufres and las Tres Vírgenes geothermal fields, Mexico. Int Geol Rev 53(9):1032–1058

    Article  Google Scholar 

  • Pandarinath K (2014) Tectonomagmatic origin of Precambrian rocks of Mexico and Argentina inferred from multi-dimensional discriminant-function based discrimination diagrams. J S Am Earth Sci 56:468–484

    Article  Google Scholar 

  • Pandarinath K, Domínguez-Domínguez H (2015) Evaluation of the solute geothermometry of thermal springs and drilled wells of La primavera (Cerritos Colorados) geothermal field, Mexico: a geochemometrics approach. J S Am Earth Sci 62:109–124

    Article  Google Scholar 

  • Pandarinath K, Pérez-Espinosa JR, Hernández-Campos FJ (2011) CCWater—un software Para la caracterización química de los fluidos geotérmicos. Actas INAGEQ 17(1):168 p

  • Pérez-Espinosa JR (2011) Desarrollo de software para clasificación y caracterización química del agua, y su aplicación en estudios de sistemas geotérmicos. Bachelor Tesis, Instituto Tecnológico de Zacatepec, Zacatepec, 118 p.

  • Portugal E, Birkle P, Barragán R, Arellano G, Tello E, Tello M (2000) Hydrochemicalisotopic and hydrogeological conceptual model of the las Tres Vírgenes geothermal field, California Sur, México. J Volcanol Geotherm Res 101:223–244

    Article  Google Scholar 

  • Puente CI, De la Peña A (1979) Geology of the Cerro Prieto geothermal field. Geothermics 8:155–175

    Article  Google Scholar 

  • Simmons SF, Stewart MK, Robinson BW, Glover RB (1994) The chemical and isotopic compositions of thermal waters at Waimangu, New Zealand. Geothermics 23:539–553

    Article  Google Scholar 

  • Tello H (1992) Composición química de la fase liquida a descarga total y a condiciones de reservorio de pozos geotérmicos de Los Humeros Puebla México. Geofis Int 31(4):383–390

    Google Scholar 

  • Tello H, Verma M, Tovar A (2000) Origin of acidity en the Los Humeros, México, geothermal reservoir. Proceedings World Geothermal Congress, Japan, pp 2959–2966

  • Tello, HE (2005) Estado de equilibrio soluto-mineral y saturación de minerales de alteración en fluidos geotérmicos de alta temperatura de México (Ph.D. thesis) Facultad de Ingeniería, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, 271 p

  • Truesdell AH, Lippmann MJ, Rodríguez MH, Pérez A (2003) Influence of reservoir processes on gas in Cerro Prieto steam. Geoth Res Counc Trans 27:335–340

    Google Scholar 

  • Valette-Silver JN, Esquer PI, Elders WA, Collier PC, Hoagland JR (1981) Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field. Proceedings: Third Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, pp 140–145.

  • Verma SP (1983) Magma genesis and chamber processes at Los Humeros caldera, Mexico—Nd and Sr isotope data. Nature 301:52–55

    Article  Google Scholar 

  • Verma SP (2002) Optimisation of the exploration and evaluation of geothermal resources. In: Chandrasekharam D, Bundschuh J (eds) Geothermal energy resources for developing countries. Swets & Zeitlinger B. V., A. A. Balkema Publishers, Rotterdam, pp. 195–224

    Google Scholar 

  • Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geotherm Res 79:9–23

    Article  Google Scholar 

  • Verma SP, Pandarinath K, Santoyo E (2008) SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics 37(6):597–621

    Article  Google Scholar 

  • Verma SP, Pandarinath K, Santoyo E, González-Partida E, Torres-Alvarado IS, Tello-Hinojosa E (2006) Fluid chemistry and temperature prior to exploitation at the las TresVírgenes geothermal field, Mexico. Geothermics 35:156–180

    Article  Google Scholar 

  • Viniegra OF (1965) Geología del Macizo de Teziutlán y la Cuenca Cenozoica de Veracrúz. Bol Asoc Mex Geol Petrol 17(7–12):100–135

    Google Scholar 

  • Yañez GC (1980) Informe geológico del proyecto geotérmico Los Humeros-Derrumbadas, Estados de Puebla y Veracruz. CFE. GPG. Internal Report, 59 p

Download references

Acknowledgment

America Yosiris García-Soto and José Enrique Marrero would like to thank Mirna Guevara García of IER-UNAM for the help during the course of this work. We convey our sincere thanks to two anonymous reviewers and Associate Editor of the journal Dr. John S. Armstrong-Altrin for reviewing and providing their valuable comments on the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailasa Pandarinath.

Additional information

America Yosiris García-Soto and José Enrique Marrero-Ochoa were on an academic stay at IER-UNAM, during 2013–2014, for realizing the undergraduate thesis work.

Electronic supplementary materials

Table S1

(DOCX 53.3 kb)

Table S2

(DOCX 42.5 kb)

Table S3

(DOC 264 kb)

Table S4

(DOC 101 kb)

Table S5

(DOCX 59.1 kb)

Table S6

(DOCX 44.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Soto, A.Y., Pandarinath, K., Marrero-Ochoa, J.E. et al. Solute geothermometry of Cerro Prieto and Los Humeros geothermal fields, Mexico: considerations on chemical characteristics of thermal water. Arab J Geosci 9, 517 (2016). https://doi.org/10.1007/s12517-016-2529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2529-0

Keywords

Navigation