Skip to main content
Log in

Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

A study of thirteen geothermal springs located in the geothermal field of Guelma, northeastern Algeria, was conducted. Samples were collected during the period between January 2014 and February 2016. Geochemical processes responsible for the chemical composition of thermal and mineralized water were evaluated. The hydrochemical analysis shows that the thermal waters are characterized by the presence of two different chemical facies, the first type SO4–Ca in the east, west and south of Guelma, the second type HCO3–Ca in the south. This analysis also attributed to sodium, chlorides, and sulfates to an evaporitic terrigenous origin by the molar ratio Sr2+/Ca2+. The thermal spring waters from Guelma geothermal system have a meteoric origin, and all samples are immature with strong mixing between hot and shallow waters with 19–38.5% rate of mixing. The silica geothermometer shows that these thermal waters have a temperature varying from 84 to 122 °C and that the water came from a depth of 2100–3000 m through a fault system that limits the pull-apart basin of Guelma. Potential environmental effluent from thermal spas could pollute in both the irrigation and drinking waters, and which imposes danger on the health of the inhabitants of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdesselam M, Mania J, Mudry J, Gélard JP, Chauve P, Lami H, Aigoun C (2000) Arguments hydrogéochimiques en faveur de Trias évaporitique non affleurant dans le massif du Djurdjura (dorsale kabyle, élément des Maghrébides). Rev Sci Eau 13:155. https://doi.org/10.7202/705387ar

    Google Scholar 

  • Alther GA (1979) A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17:556–561. https://doi.org/10.1111/j.1745-6584.1979.tb03356.x

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 19thed. American Public Health Association, Washington, DC, pp 1–467

    Google Scholar 

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim Cosmochim Acta 47:547–566. https://doi.org/10.1016/0016-7037(83)90277-6

    Article  Google Scholar 

  • Aubouin J, Durand-Delga M (1971) Aire méditerranéenne. In Encyclopaedia Universalis, 10, p 743–745. Paris

  • Awaleh MO, Hoch FB, Boschetti T, Soubaneh YD, Egueh NM, Elmi SA, Mohamed J, Khaireh MA (2015) The geothermal resources of the Republic of Djibouti—II: geochemical study of the Lake Abhe geothermal field. J Geochem Explor 159:129–147. https://doi.org/10.1016/j.gexplo.2015.08.011

    Article  Google Scholar 

  • Awaleh MO, Boschetti T, Soubaneh YD, Baudron P, Kawalieh AD, Dabar OA, Ahmed MM, Ahmed SI, Daoud MA, Egueh NM, Mohamed J (2017) Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J Volcanol Geoth Res 331:26–52. https://doi.org/10.1016/j.jvolgeores.2016.11.008

    Article  Google Scholar 

  • Ayadi Y, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T, Hamed Y (2018) Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environ Earth Sci 77:208. https://doi.org/10.1007/s12665-018-7523-2

    Article  Google Scholar 

  • Bails J (1888) Les sources thermales et minérales du département d’Oran

  • Belhai M, Fujimitsu Y, Bouchareb-Haouchine FZ, Haouchine A, Nishijima J (2016) A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria. Acta Geochim 35:271–287. https://doi.org/10.1007/s11631-016-0092-8

    Article  Google Scholar 

  • Belhai M, Fujimitsu Y, Nishijima J, Bersi M (2017) Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters. Arab J Geosci 10:743. https://doi.org/10.1007/s12517-016-2790-2

    Article  Google Scholar 

  • Belhamra A, Hani A (2016) Impact des Néo—Facteurs de Pollution sur la Qualité des Eaux de la Zone Aval de la Vallée de l’Oued Seybouse—Est Algérien = Pollution Néo Factors Impact on Water: Down Part of Oued Seybouse Valley—East of Algeria. Synthèse:30–41. https://doi.org/10.12816/0027950

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: ain Azel plain (Algeria). Geoderma 159:390–398. https://doi.org/10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Benamara A, Kherici-Bousnoubra H, Bouabdallah F (2017) Thermo-mineral waters of Hammam Meskoutine (north-east Algeria): composition and origin of mineralization. J Water Land Dev 34:47–57. https://doi.org/10.1515/jwld-2017-0037

    Article  Google Scholar 

  • Besser H, Mokadem N, Redhaounia B, Hadji R, Hamad A, Hamed Y (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterr J Environ Integr 3:119. https://doi.org/10.1007/s41207-018-0055-z

    Article  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  • Boudoukha A, Athamena M (2012) Caractérisation des eaux thermales de l’ensemble Sud sétifien. Est algérien. Revue des sciences de l’eau 25:103. https://doi.org/10.7202/1011602ar

  • Boudoukha A, Belhadj MZ, Benkadja R (2012) Impact d’une pollution anthropique et d’une contamination naturelle sur la qualité des eaux du barrage de Zit Emba. Est algérien. La Houille Blanche 67:34–41. https://doi.org/10.1051/lhb/2012028

    Article  Google Scholar 

  • Bouri S, Gasmi M, Jaouadi M, Souissi I, Mimi AL, Dhia HB (2007) Etude intégrée des données de surface et de subsurface pour la prospection des bassins hydrogéothermiques: cas du bassin de Maknassy (Tunisie centrale)/Integrated study of surface and subsurface data for prospecting hydrogeothermal basins: case of the Maknassy basin (central Tunisia). Hydrol Sci J 52:1298–1315. https://doi.org/10.1623/hysj.52.6.1298

    Article  Google Scholar 

  • Boutaleb A, Afalfiz H, Aïssa D, Kolli O, Marignac C, Touahri B (2000) Métallogénie et évolution géodynamique de la chaîne tellienne en Algérie. Bull Serv Géol Algérie 11(1):3–27

    Google Scholar 

  • Brady PV, Walther JV (1992) Surface chemistry and silicate dissolution at elevated temperatures. Am J Sci 292:639–658. https://doi.org/10.2475/ajs.292.9.639

    Article  Google Scholar 

  • Brinis N, Boudoukha A, Djabri L, Mania J (2009) La salinité des eaux souterraines de la zone Est de la plaine d’El Outaya. Région de Biskra, Algérie. Bull du Service Géol Natl 20:49–61

    Google Scholar 

  • Brown CE (ed) (1998) Applied multivariate statistics in geohydrology and related sciences. Springer, Berlin

    Google Scholar 

  • Cai S, Long X, Li L, Liang H, Wang Q, Ding X (2019) Determinants of intention and behavior of low carbon commuting through bicycle-sharing in China. J Clean Prod 212:602–609. https://doi.org/10.1016/j.jclepro.2018.12.072

    Article  Google Scholar 

  • Can I (2002) A new improved Na/K geothermometer by artificial neural networks. Geothermics 31:751–760. https://doi.org/10.1016/S0375-6505(02)00044-5

    Article  Google Scholar 

  • Chen C-J, Chen CW, Wu M-M, Kuo T-L (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892. https://doi.org/10.1038/bjc.1992.380

    Article  Google Scholar 

  • Chouabi AM (1987) Étude géologique de la région de Hammam N’Baïls (SE de Guelma, Constantinois, Algérie): un secteur des zones externes de la chaîne des Maghrébides. Thèse de 3 cycle, université Toulouse-3

  • Cormy G, Demians d’Archimbaud J (1970) Les possibilités géothermiques de l’Algérie. Geothermics 2:110–116. https://doi.org/10.1016/0375-6505(70)90012-X

    Article  Google Scholar 

  • CRAAG (2004) Prospection géophysique-etude gravimétrique: Guelaat Bousbaa (Guelma). p 64

  • Custadio E (1983) Hydrogeoquimica. In: Custado E, Llamas MR (eds) Hydrologia Subterranean, Section 10. Omega, Barcelona

    Google Scholar 

  • Darest de la Chavane JC (1909) Carte détaillée de l’Algérie à 1:50 000, feuille no 76, Gounod–La Mahouna. Publications du Service de la Carte géologique. Algérie, France

  • Darest de la Chavane JC (1910) Recherches géologiques et paléontologiques dans la région de Guelma., Université de Lyon, Lyon

  • Dever L (1985) Approches chimiques et Isotopiques des inter-réactions fluide-matrice en zone non saturée carbonatée. Thèse Doct. es. Sci., Univ. Paris VI, pp 196

  • Dib H (1985) Le thermalisme de l’Est algérien., USTHB

  • Dib H (2008) Guide pratique des sources thermales de l’Est algérien. Mémoires du Service Géologique national, vol 1, Editions du Service Géologique national, Alger

  • Djemmal S, Menani MR, Chamekh K, Baali F (2017) The contribution of fracturations in the emergence of the thermal springs in Setif city, Eastern Algeria. Carbonates Evaporites 12:141. https://doi.org/10.1007/s13146-017-0375-0

    Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005a) Spatial relationship between arsenic in drinking water and Mycobacterium ulcerans infection in the Amansie West District. Ghana Miner Mag 69:707–717. https://doi.org/10.1180/0026461056950282

    Article  Google Scholar 

  • Duker A, Carranza E, Hale M (2005b) Arsenic geochemistry and health. Environ Int 31:631–641. https://doi.org/10.1016/j.envint.2004.10.020

    Article  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57. https://doi.org/10.1080/01969727308546046

    Article  Google Scholar 

  • Falc G, Bocio A, Gómez-Catalán J, Llobet JM, Domingo JL (2006) Arsenic, cadmium, lead and mercury dietary intake by babies from Catalonia, Spain. An evaluation of risk. Epidemiology 17:S321. https://doi.org/10.1097/00001648-200611001-00846

    Article  Google Scholar 

  • Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH (2000) Math Geol 32:943–968. https://doi.org/10.1023/A:1007522519268

    Article  Google Scholar 

  • Favara R, Grassa F, Inguaggiato S, Valenza M (2001) Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily). Appl Geochem 16:1–17. https://doi.org/10.1016/S0883-2927(00)00015-9

    Article  Google Scholar 

  • Foued B, Hénia D, Lazhar B, Nabil M, Nabil C (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90:226–232. https://doi.org/10.1007/s12594-017-0703-y

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the NA/K geothermometer. Trans Geotherm Resour Council 3:221–224

    Google Scholar 

  • Fournier RO (1992) Water geothermometers applied to geothermal ener. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP, Vial del Corso, Italy, pp 37–69

    Google Scholar 

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geotherm Resour Council Bull 11:3–12

    Google Scholar 

  • Frapporti G, Vriend SP, van Duijvenbooden W (1993) Hydrogeochemistry of Dutch groundwater: classification into natural homogeneous groupings with fuzzy c-means clustering. Appl Geochem 8:273–276. https://doi.org/10.1016/S0883-2927(09)80049-8

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach WF, Soto RC (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica. Appl Geochem 7:309–332. https://doi.org/10.1016/0883-2927(92)90022-U

    Article  Google Scholar 

  • Gouaidia L, Guefaifia O, Boudoukha A, LaidHemila M, Martin C (2012) Évaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: Exemple de la plaine de Meskiana (Nord-Est Algérien). Physio-Geo 141–160. https://doi.org/10.4000/physio-geo.2632

  • Grande JA, Carro B, Borrego J, de La Torre ML, Santisteban M (2013) Hydrogeochemical variables regionalization: applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD. Mar Pollut Bull 69:150–156. https://doi.org/10.1016/j.marpolbul.2013.01.022

    Article  Google Scholar 

  • Guigue S (ed) (1940) Les sources thermominérales de l’Algérie., Tome I. Serv. Carte Géol. De l’Algérie., Algerie. 3ème série, 5ème fasc

  • Guigue S (ed) (1947) Les sources thermominérales de l’Algérie., Tome II. Serv. Carte Géol. De l’Algérie., Algerie. 3ème série, 9ème fasc

  • Güler C, Thyne GD (2004) Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resour Res 40:193. https://doi.org/10.1029/2004WR003299

    Article  Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474. https://doi.org/10.1007/s10040-002-0196-6

    Article  Google Scholar 

  • Hamad A, Baali F, Hadji R, Zerrouki H, Besser H, Mokadem N, Legrioui R, Hamed Y (2018) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterr J Environ Integr 3:721. https://doi.org/10.1007/s41207-017-0045-6

    Article  Google Scholar 

  • Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcanol Geoth Res 189:92–104. https://doi.org/10.1016/j.jvolgeores.2009.10.011

    Article  Google Scholar 

  • Haouchine-Bouchareb FZ (2012) Etude hydrogéochimique des sources thermales de l’Algérie du Nord. Potentialités géothermiques. Thèse doc. d’état. FSTGAT-USTHB. Alger. Algérie, p 135

  • Haut Conseil de la santé publique (2017) Mise à jour du guide pratique de dépistage et de prise en charge des expositions au plomb chez l’enfant mineur et la femme enceinte. France

  • Helena B (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816. https://doi.org/10.1016/S0043-1354(99)00225-0

    Article  Google Scholar 

  • Hem J (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Sur Water, Washington, p 57

    Google Scholar 

  • Hsissou Y, Chauve P, Mania J, Mangin A, Bakalowicz M, Gaiz A (1996) Caractérisation des eaux de l’aquifère turonien du bassin du Tadla (Maroc) par le rapport des concentrations molaires. J Hydrol 183:445–451. https://doi.org/10.1016/0022-1694(95)03009-3

    Article  Google Scholar 

  • Issaâdi A (1992) Le thermalisme dans son cadre géostructural. Apports à la connaissance de l’Algérie profonde et de ressource géothermales. Thèse doc. d’état. FSTGAT-USTHB. Alger. Algérie, p 267

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151. https://doi.org/10.1177/001316446002000116

    Article  Google Scholar 

  • Khelif S, Boudoukha A (2018) Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. J Water Land Dev 37:65–74. https://doi.org/10.2478/jwld-2018-0026

    Article  Google Scholar 

  • Lahondère JC (1987) Les séries ultratelliennes d’algérie Nord-orientale et les formations environnantes dans leur cadre structural. Université Paul-Sabatier, Toulouse, p 242

    Google Scholar 

  • Laissoub B (1974) Etude des eaux minérales, thermales et thermominérales en oranie. Thèse de doctorat, No. 34. Institut des sciences médicales. Oran, Oran

  • Liu C-W, Lin K-H, Kuo Y-M (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89. https://doi.org/10.1016/S0048-9697(02)00683-6

    Article  Google Scholar 

  • Long X, Chen Y, Du J, Oh K, Han I (2017a) Environmental innovation and its impact on economic and environmental performance: evidence from Korean-owned firms in China. Energy Pol 107:131–137. https://doi.org/10.1016/j.enpol.2017.04.044

    Article  Google Scholar 

  • Long X, Chen Y, Du J, Oh K, Han I, Yan J (2017b) The effect of environmental innovation behavior on economic and environmental performance of 182 Chinese firms. J Clean Prod 166:1274–1282. https://doi.org/10.1016/j.jclepro.2017.08.070

    Article  Google Scholar 

  • Long X, Wu C, Zhang J, Zhang J (2018) Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: a metafrontier directional slacks-based measure approach. Renew Sustain Energy Rev 82:3962–3971. https://doi.org/10.1016/j.rser.2017.10.077

    Article  Google Scholar 

  • Maouche S, Abtout A, Merabet N-E, Aïfa T, Lamali A, Bouyahiaoui B, Bougchiche S, Ayache M (2013) Tectonic and hydrothermal activities in Debagh, Guelma Basin (Algeria). J Geol Res 2013:1–13. https://doi.org/10.1155/2013/409475

    Google Scholar 

  • Merdas B (2006) Contribution à l’étude géologique et gîtologique des minéralisations de la région de Hammam N’bails (Nord Est algérien).Mémoir. Magister, USTHB (FSTGAT), Alger. Algérie

  • Meybek M (1984) Les fleuves et le cycle géochimique des. Doctorat d’état, Univ. Paris VI

  • Milton AH, Hasan Z, Rahman A, Rahman M (2001) Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43:136–140. https://doi.org/10.1539/joh.43.136

    Article  Google Scholar 

  • Mohammadrezapour O, Kisi O, Pourahmad F (2018) Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Comput Appl 27:136. https://doi.org/10.1007/s00521-018-3768-7

    Google Scholar 

  • Mroczek EK (2005) Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand. Geothermics 34:218–233. https://doi.org/10.1016/j.geothermics.2004.06.004

    Article  Google Scholar 

  • Mustapha A, Aris AZ (2012) Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Pol J Environ Stud 21(5):1359–1367

    Google Scholar 

  • Mutlu H (1998) Chemical geothermometry and fluid–mineral equilibria for the Ömer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geoth Res 80:303–321. https://doi.org/10.1016/S0377-0273(97)00051-6

    Article  Google Scholar 

  • Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico—part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recover Syst CHP 7:243–258. https://doi.org/10.1016/0890-4332(87)90138-4

    Article  Google Scholar 

  • Ouali S (2015) Contribution à l’étude de quelques réservoirs géothermique en Algérie., FSTGAT/USTHB

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans AGU 25:914. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Pouget I, Chouchak D (1923) Radioactivité des eaux minérales du département de Constantine

  • Pouget I, Chouchak D (1926) Radioactivit des eaux minérales du département d’Oran (Ibid., XIV, pp 347–360)

  • Raoult JF (1974) Géologie du centre de la chaîne nummidique (nord du constantinois, Algérie). Thèse sciences, Paris (France), Mém. Soc Géol. Fr. nouv. Série, no. 121

  • Rezig M (1991) Etude géothermique du Nord Est de l’Algérie. Université Montpellier II Sciences et Techniques du Languedoc, Montpellier

    Google Scholar 

  • Rimi A, Chalouan A, Bahi L (1998) Heat flow in the westernmost part of the Alpine Mediterranean system (the Rif, Morocco). Tectonophysics 285:135–146. https://doi.org/10.1016/S0040-1951(97)00185-6

    Article  Google Scholar 

  • Robinson B, Duwig C, Bolan N, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73. https://doi.org/10.1016/S0048-9697(02)00294-2

    Article  Google Scholar 

  • Saibi H (2009) Geothermal resources in Algeria. Renew Sustain Energy Rev 13:2544–2552. https://doi.org/10.1016/j.rser.2009.06.019

    Article  Google Scholar 

  • Schaefer K, Einax J (2010) Analytical and chemometric characterization of the Cruces River in South Chile. Environ Sci Pollut Res 17(1):115–123

    Article  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  • Smith AH, Goycolea M, Biggs ML, Haque R (1996) Marked increase in bladder and lung cancer mortality in an arsenic exposed region in northern Chile. Epidemiology 7:S84. https://doi.org/10.1097/00001648-199607001-00264

    Article  Google Scholar 

  • Thomas D (1988) Geochemical precursors to seismic activity. PAGEOPH 126:241–266. https://doi.org/10.1007/BF00878998

    Article  Google Scholar 

  • Tonani FB (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Strub AS, Ungemach P (eds) Advances in European geothermal research. Springer, Netherlands, pp 428–443

    Chapter  Google Scholar 

  • Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107:727–729. https://doi.org/10.1289/ehp.99107727

    Article  Google Scholar 

  • Truesdell AH (1975) Summary of section III geochemical techniques in exploration. Second United Nations symposium on the development and use of geothermal resources, vol 1, San Francisco, US Government Printing Office, Washington, pp liii–lxiii

  • Truesdell A, Fournier R (1977) Procedure for estimating the temperature of a hot water component in a mixed water using a plot of dissolved silica vs. enthalpy. U.S. Geol Surv J Res 5:49–52

    Google Scholar 

  • Verdeil P (ed) (1974) Carte 1/50000 des eaux minérales, thermales et thermominérales de l’Algérie

  • Verdeil P (1982) Algerian thermalism in its geostructural setting—How hydrogeology has helped in the elucidation of Algeria’s deep-seated structure. J Hydrol 56:107–117. https://doi.org/10.1016/0022-1694(82)90060-9

    Article  Google Scholar 

  • Verma MP (2000a) Limitations in applying silica geothermometers from geothermal reservoir evaluation. In: Proceedings of the 25th Workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-165

  • Verma MP (2000b) Limitations in applying silica geothermometers from geothermal reservoir evaluation. In: Proceedings, the 25th workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-165

  • Vila JM (1980) La chaine alpine d’Algérie orientale et des confins algérotunisiens. Thèse doctorat, univ de Pierre et Marie Curie, vol 2, Paris VI. France. p 665

  • Ville M (1852) Recherche sur les roches, les eaux et les gites minéraux des provinces d’oran et d’Alger

  • Wakita H, Nakamura Y, Sano Y (1985) Groundwater radon variations reflecting changes in regional stress fields. In: Kisslinger C, Rikitake T (eds) Practical approaches to earthquake prediction and warning. Springer, Netherlands, pp 545–557

    Chapter  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236. https://doi.org/10.2307/2282967

    Article  Google Scholar 

  • Webster JG (1999) The source of arsenic (and other elements) in theMarbel–Matingao river catchment, Mindanao, Philippines. Geothermics 28:95–111. https://doi.org/10.1016/S0375-6505(98)00046-7

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine (Algérie, Maroc, Tunisie): structure, Strati-Graphie et évolution du Trias au Miocène. Rev Géol Dynam Géog Phys 24:201–297

    Google Scholar 

  • Yazdi M, Taheri M, Navi P (2015) Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran. Environ Earth Sci 73:5395–5404. https://doi.org/10.1007/s12665-014-3794-4

    Article  Google Scholar 

  • Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. CR Geosci 338:126–139. https://doi.org/10.1016/j.crte.2005.11.002

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Bouaicha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaicha, F., Dib, H., Bouteraa, O. et al. Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim 38, 683–702 (2019). https://doi.org/10.1007/s11631-019-00324-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00324-2

Keywords

Navigation