Skip to main content
Log in

Use of interactive multisensor snow and ice mapping system snow cover maps (IMS) and artificial neural networks for simulating river discharges in Eastern Turkey

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Basins located in Eastern Turkey are largely fed by snowmelt runoff during spring and early summer seasons. This study investigates the efficiency of artificial neural networks (ANNs) in snowmelt runoff generation. Although ANNs have been used for streamflow simulating/forecasting in the last two decades, using satellite-based snow-covered area (SCA) maps and meteorological observations as inputs to ANN provides a novel basis for estimating streamflow. The proposed methodology is implemented over Upper Euphrates River Basin in Eastern Turkey. SCA data was acquired from Interactive Multisensor Snow and Ice Mapping System (IMS) for an 8-year period from February 2004 to September 2011. Meteorological observations including daily cumulative precipitation and daily average air temperatures were obtained from Turkish State Meteorological Services. The simulation results are promising with coefficient of correlation varying from 0.67 to 0.98 among proposed models. Past days discharge was found to substantially improve the forecast accuracy. The paper presents the expected basin discharge for 2011 water year based on meteorological observations and SCA input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abudu S, King JP, Bawazir AS (2011) Forecasting monthly streamflow of spring-summer runoff season in Rio Grande headwaters basin using stochastic hybrid modeling approach. J Hydrol Eng 16:384–390. doi:10.1061/(Asce)He.1943-5584.0000322

    Article  Google Scholar 

  • Akyurek Z, Surer S, Beser O (2011) Investigation of the snow-cover dynamics in the Upper Euphrates Basin of Turkey using remotely sensed snow-cover products and hydrometeorological data. Hydrol Process 25:3637–3648. doi:10.1002/Hyp.8090

    Article  Google Scholar 

  • Armstrong JS (1985) Long-range forecasting: from crystal ball to computer 2nd Edition. Wiley

  • Ataş M, Yardimci Y, Temizel A (2012) A new approach to aflatoxin detection in chili pepper by machine vision. Comput Electron Agric 87:129–141. doi:10.1016/j.compag.2012.06.001

    Article  Google Scholar 

  • Birikundavyi S, Labib R, Trung HT, Rousselle J (2002) Performance of neural networks in daily streamflow forecasting. J Hydrol Eng 7:392–398. doi:10.1061/(Asce)1084-0699(2002)7:5(392)

    Article  Google Scholar 

  • Bostan PA, Heuvelink GBM, Akyurek SZ (2012) Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int J Appl Earth Obs 19:115–126. doi:10.1016/j.jag.2012.04.010

    Article  Google Scholar 

  • Breiman L, Spector P (1992) Submodel selection and evaluation in regression—the X-random case. Int Stat Rev 60:291–319. doi:10.2307/1403680

    Article  Google Scholar 

  • Chokmani K, Ouarda TBMJ, Hamilton S, Ghedira MH, Gingras H (2008) Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J Hydrol 349:383–396. doi:10.1016/j.jhydrol.2007.11.024

    Article  Google Scholar 

  • Crane RG, Anderson MR (1984) Satellite discrimination of snow cloud surfaces. Int J Remote Sens 5:213–223

    Article  Google Scholar 

  • Dozier J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ 28:9. doi:10.1016/0034-4257(89)90101-6

    Article  Google Scholar 

  • Gao Y, Xie HJ, Yao TD, Xue CS (2010) Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens Environ 114:1662–1675. doi:10.1016/j.rse.2010.02.017

    Article  Google Scholar 

  • Gessel G (1989) An algorithm for snow and ice detection using AVHRR data. An extension to the APOLLO software package. Int J Remote Sens 10:897–905

    Article  Google Scholar 

  • Govindaraju RS, Rao AR (2000) Artificial neural networks in hydrology. Kluwer Academic Publishers, Amsterdam

    Book  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ 54:127–140. doi:10.1016/0034-4257(95)00137-P

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194. doi:10.1016/S0034-4257(02)00095-0

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. 2nd edition, Prentice-Hall

  • Helfrich SR, McNamara D, Ramsay BH, Baldwin T, Kasheta T (2007) Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol Process 21:1576–1586. doi:10.1002/Hyp.6720

    Article  Google Scholar 

  • Kisi O (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12:532–539. doi:10.1061/(Asce)1084-0699(2007)12:5(532)

    Article  Google Scholar 

  • Kisi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39:27–40. doi:10.2166/Nh.2008.026

    Article  Google Scholar 

  • Kisi O (2009) Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J Hydrol Eng 14:773–782. doi:10.1061/(Asce)He.1943-5584.0000053

    Article  Google Scholar 

  • Kisi O (2013) Evolutionary neural networks for monthly pan evaporation modeling. J Hydrol 498:36–45. doi:10.1016/j.jhydrol.2013.06.011

    Article  Google Scholar 

  • Kisi O, Tombul M (2013) Modeling monthly pan evaporations using fuzzy genetic approach. J Hydrol 477:203–212

    Article  Google Scholar 

  • Kisi O, Shiri J, Tombul M (2013) Modeling rainfall-runoff process using soft computing techniques. Comput Geosci-UK 51:108–117. doi:10.1016/j.cageo.2012.07.001

    Article  Google Scholar 

  • Kormos PR, Marks D, McNamara JP, Marshall HP, Winstral A, Flores AN (2014) Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. J Hydrol 519:190–204. doi:10.1016/j.jhydrol.2014.06.051

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998wr900018

    Article  Google Scholar 

  • Lohani AK, Jain SK, Kumar R., Singh RD (2012) Stream flow forecasting using ANN and fuzzy logic. India Water Week 2012, water, energy and food security: call for solutions, 10–14 April 2012, New Delhi

  • Mazari N, Tekeli AE, Xie HJ, Sharif HO, El Hassan AA (2013) Assessment of ice mapping system and moderate resolution imaging spectroradiometer snow cover maps over Colorado Plateau. J Appl Remote Sens 7 doi: 10.1117/1.Jrs.7.073540

  • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. doi:10.1007/bf02478259

    Article  Google Scholar 

  • Mognard N (2003) Snow cover dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Praxis-Springer, Chichester

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • NSIDC, (2013) http://nsidc.org/data/docs/noaa/g02156_ims_snow_ice_analysis/index.html (last access 02 August 2014)

  • Papa F, Legresy B, Mognard NM, Josberger EG, Remy F (2002) Estimating terrestrial snow depth with the Topex-Poseidon altimeter and radiometer. IEEE T Geosci Remote 40:2162–2169. doi:10.1109/Tgrs.2002.802463

    Article  Google Scholar 

  • Parajka J, Bloschl G (2008) Spatio-temporal combination of MODIS images—potential for snow cover mapping. Water Resour Res 44 doi: 10.1029/2007wr006204

  • Parent AC, Anctil F, Cantin V, Boucher MA (2008) Neural network input selection for hydrological forecasting affected by snowmelt. J Am Water Resour Assoc 44:679–688. doi:10.1111/j.1752-1688.2008.00198.x

    Article  Google Scholar 

  • Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242

    Article  Google Scholar 

  • Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12:1537–1546. doi:10.1002/(Sici)1099-1085(199808/09)12:10/11<1537::Aid-Hyp679>3.0.Co;2-A

    Article  Google Scholar 

  • Rees WG (2006) Remote sensing of snow and ice. Taylor and Francis, Cambridge University, London

    Google Scholar 

  • Robinson DA, Dewey KF, Heim RR (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696. doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2

    Article  Google Scholar 

  • Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over North America with multispectral satellite data. J Appl Meteorol 39:1866–1880. doi:10.1175/1520-0450(2000)039<1866:Amosco>2.0.Co;2

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. doi:10.1038/323533a0

    Article  Google Scholar 

  • Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 19.1–19.71

    Google Scholar 

  • Ṣensoy A, Uysal G (2012) The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data. Water Resour Manag 26:3415–3440. doi:10.1007/s11269-012-0079-0

    Article  Google Scholar 

  • Simic A, Fernandes R, Brown R, Romanov P, Park W (2004) Validation of VEGETATION, MODIS, and GOES plus SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol Process 18:1089–1104. doi:10.1002/Hyp.5509

    Article  Google Scholar 

  • Singh P, Spitzbart G, Hubl H, Weinmeister HW (1997) Hydrological response of snowpack under rain-on-snow events: a field study. J Hydrol 202:1–20. doi:10.1016/S0022-1694(97)00004-8

    Article  Google Scholar 

  • Sönmez İ, Tekeli AE, Erdi E (2014) Snow cover trend analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey. Int J Climatol 34:2349–2361. doi:10.1002/Joc.3843

    Article  Google Scholar 

  • Şorman AA, Tekeli AE, Ṣensoy A, Ṣorman AÜ (2004) Forecasting the early snowmelt flood event of 2004—a case study from Upper Euphrates Basin. 6th International Congress on Advances in Civil Engineering, 6–8 October 2004 Bogazici University, Istanbul, Turkiye

  • Ṣorman AA, Sensoy A, Tekeli AE, Sorman AU, Akyurek Z (2009) Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrol Process 23:1031–1040. doi:10.1002/Hyp.7204

    Article  Google Scholar 

  • Surfleet CG, Tullos D (2013) Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J Hydrol 479:24–34. doi:10.1016/j.jhydrol.2012.11.021

    Article  Google Scholar 

  • Tekeli AE (2008) Early findings in comparison of AMSR-E/Aqua L3 global snow water equivalent EASE-grids data with in situ observations for Eastern Turkey. Hydrol Process 22:2737–2747. doi:10.1002/Hyp.7093

    Article  Google Scholar 

  • Tekeli Y, Tekeli AE (2012) A technique for improving MODIS standard snow products for snow cover monitoring over Eastern Turkey. Arab J Geosci 5:353–363. doi:10.1007/s12517-010-0274-3

    Article  Google Scholar 

  • Tekeli AE, Akyurek Z, Sorman AA, Sensoy A, Sorman AU (2005a) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens Environ 97:216–230. doi:10.1016/j.rse.2005.03.013

    Article  Google Scholar 

  • Tekeli AE, Akyurek Z, Sensoy A, Sorman AA, Sorman U (2005b) Modelling the temporal variation in snow-covered area derived from satellite images for simulating/forecasting of snowmelt runoff in Turkey. Hydrol Sci J 50:669–682. doi:10.1623/hysj.2005.50.4.669

    Google Scholar 

  • Tekeli AE, Sensoy A, Sorman A, Akyurek Z, Sorman U (2006) Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu basin, Turkey. Hydrol Process 20:705–721. doi:10.1002/Hyp.6114

    Article  Google Scholar 

  • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4:232–239. doi:10.1061/(Asce)1084-0699(1999)4:3(232)

    Article  Google Scholar 

  • Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5:156–161. doi:10.1061/(Asce)1084-0699(2000)5:2(156)

    Article  Google Scholar 

  • Wang X, Xie H (2007) New multi-day snow cover products from combination of Terra and Aqua MODIS daily snow cover data. AGU Fall meeting, San Francisco, CA, December 10–14

  • Wassenaar HJ, Chen W, Cheng J (2004) Sujianto A (2004) Enhancing discrete choice demand modeling for decision-based design. J Mech Des 127(4):514–523. doi:10.1115/1.1897408

    Article  Google Scholar 

  • Willimot CJ (1981) On the validation of the models. Phys Geogr 2:184–194

    Google Scholar 

  • Yadav D, Naresh R, Sharma V (2011) Stream flow forecasting using Levenberg-Marquardt algorithm approach. Int J Water Resour Environ Eng 3(1):30–40

    Google Scholar 

  • Yilmaz AG, Imteaz MA, Jenkins G (2011) Catchment flow estimation using Artificial Neural Networks in the mountainous Euphrates Basin. J Hydrol 410:134–140

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deanship of Scientific Research, Research Center,College of Engineering, King Saud University, Riyadh, Kingdom of Saudi Arabia. Authors thank Turkish State Meteorological Services for providing the data. The valuable remarks and solid guidelines of the anonymous reviewers improved the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Emre Tekeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataṣ, M., Tekeli, A.E., Dönmez, S. et al. Use of interactive multisensor snow and ice mapping system snow cover maps (IMS) and artificial neural networks for simulating river discharges in Eastern Turkey. Arab J Geosci 9, 150 (2016). https://doi.org/10.1007/s12517-015-2074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2074-2

Keywords

Navigation