Skip to main content

Advertisement

Log in

Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography

  • Echocardiography (G Dwivedi, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review discusses the recent advances in automated echocardiography using artificial intelligence and machine learning (ML) techniques. Specific emphasis is placed on the potential for machine learning-based methods to improve accuracy and reproducibility of echocardiographic assessment as well as early cardiovascular disease detection and personalized risk assessment.

Recent Findings

Echocardiography remains the first line imaging modality for evaluation of many cardiovascular diseases. The last few years have witnessed a rapid expansion and growth of ML-based automated analysis and interpretation of echocardiography. These ML algorithms have shown great promise for improving data reliability, accuracy, and reproducibility of echocardiographic results. We anticipate that the application of ML algorithms will further expand the indications of echocardiography to include diseases that are traditionally only diagnosed with the more advanced imaging modalities such as cardiac magnetic resonance imaging. The ability to leverage ML’s robust capability for processing large and complex datasets will result in improved diagnosis of cardiovascular disease at subclinical stages, enable prediction of disease progression and prognosis, and facilitate the characterization of disease phenotypes to allow more targeted therapies.

Summary

The paradigm is rapidly shifting in the field of echocardiography with the emergence of ML algorithms that are promising to improve data reliability, accuracy, reproducibility, and workflow. Current and emerging evidence suggests that these systems will undoubtedly revolutionize the diagnostic utility of echocardiography both at subclinical and clinical stages and are expected to improve personalized cardiovascular risk assessment. However, widespread implementation of this novel technology will need to overcome challenging regulatory body approval processes. At present, the technology shows promise in improving diagnostic pathways, but evidence of clinical utility is lacking. Large trials will be required to provide robust evidence of ML’s prognostic value in echocardiographic assessment before its implementation in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hillis GS, Bloomfield P. Basic transthoracic echocardiography. BMJ (Clinical research ed). 2005;330(7505):1432–6.

    Google Scholar 

  2. Boon N, Norell M, Hall J, Jennings K, Penny L, Wilson C, et al. National variations in the provision of cardiac services in the United Kingdom: second report of the British cardiac society working group, 2005. Heart. 2006;92(7):873–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wharton G, Steeds R, Allen J, Phillips H, Jones R, Kanagala P, et al. A minimum dataset for a standard adult transthoracic echocardiogram: a guideline protocol from the British society of echocardiography. Echo Res Pract. 2015;2(1):G9–G24.

    PubMed  PubMed Central  Google Scholar 

  4. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.

    PubMed  Google Scholar 

  5. • Zhang J, Gajjala S, Agrawal P, Tison Geoffrey H, Hallock Laura A, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138(16):1623–35 This is a very interesting paper that utilises a large echocardiography dataset to fully automate echocardiographic analysis using ML techniques from view identification, image segmentation, quantification of structure and function to disease detection.

    PubMed  PubMed Central  Google Scholar 

  6. Alsharqi M, Upton R, Mumith A, Leeson P. Artificial intelligence: a new clinical support tool for stress echocardiography. Expert Rev Medical Devices. 2018;15(8):513–5.

    CAS  PubMed  Google Scholar 

  7. Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, Leeson P. Artificial intelligence and echocardiography. Echo Res Pract. 2018;5(4):R115–r25.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gandhi S, Mosleh W, Shen J, Chow CM. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world. Echocardiography. 2018;35(9):1402–18.

    PubMed  Google Scholar 

  9. Krittanawong C, Tunhasiriwet A, Zhang H, Wang Z, Aydar M, Kitai T. Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol. 2017;69(16):2100–1.

    PubMed  Google Scholar 

  10. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to Automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.

    PubMed  Google Scholar 

  11. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7.

    PubMed  Google Scholar 

  12. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6).

  13. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877–84.

    PubMed  Google Scholar 

  14. Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol. 2018;26(5):1746–54.

    PubMed  Google Scholar 

  15. • Genovese D, Rashedi N, Weinert L, Narang A, Addetia K, Patel AR, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance. J Am Soc Echocardiogr. 2019;32(8):969–77 This is a recent paper demonstrating the use of ML techniques for automated assessment of right ventricular size and function.

    PubMed  Google Scholar 

  16. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. J Am Coll Cardiol Img. 2018;11(7):1000–9.

    Google Scholar 

  17. • Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1549–65 This in-depth review provides an excellent overview of ML techniques with a focus on DL, including limitations associated with each DL technique.

    PubMed  Google Scholar 

  18. Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms. From machine learning to statistical modelling. Methods Inf Med. 2014;53(6):419–27.

    CAS  PubMed  Google Scholar 

  19. Playford D, Jais P, Weerasooriya R, Martyn S, Bollam L, Turewicz M, et al. A validation study of automated atrial fibrillation detection using Alerte digital health’s artificial intelligence system. Heart Lung Circ. 2017;26:S279–S80.

    Google Scholar 

  20. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    PubMed  PubMed Central  Google Scholar 

  21. Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic clustering of left ventricular diastolic function parameters: Patterns and Prognostic Relevance. JACC Cardiovasc Imaging. 2018;2562(7 Pt 1):1149–61.

    Google Scholar 

  22. Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70–82.

    PubMed  Google Scholar 

  23. Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: the way forward. J Nucl Cardiol. 2018;26(5):1755–8.

    PubMed  PubMed Central  Google Scholar 

  24. Forsstrom JJ, Dalton KJ. Artificial neural networks for decision support in clinical medicine. Ann Med. 1995;27(5):509–17.

    CAS  PubMed  Google Scholar 

  25. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    CAS  PubMed  Google Scholar 

  26. Dilsizian ME, Siegel EL. Machine meets biology: a primer on artificial intelligence in cardiology and cardiac imaging. Curr Cardiol Rep. 2018;20(12):139.

    PubMed  Google Scholar 

  27. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18(4):570–84.

    PubMed  PubMed Central  Google Scholar 

  28. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.

    PubMed  Google Scholar 

  30. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    PubMed  Google Scholar 

  31. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14.

    PubMed  Google Scholar 

  32. Pellikka PA, She L, Holly TA, Lin G, Varadarajan P, Pai RG, et al. Variability in ejection fraction measured by echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction variability in left ventricular ejection fraction by cardiac imaging modality variability in left ventricular ejection fraction by cardiac imaging modality. JAMA Netw Open. 2018;1(4):e181456 e.

    PubMed  PubMed Central  Google Scholar 

  33. Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z, Adam D. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med Image Anal. 2017;36:15–21.

    PubMed  Google Scholar 

  34. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1(1):6.

    PubMed  PubMed Central  Google Scholar 

  35. Knackstedt C, Bekkers SC, Schummers G, Schreckenberg M, Muraru D, Badano LP, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol. 2015;66(13):1456–66.

    PubMed  Google Scholar 

  36. Levy F, Dan Schouver E, Iacuzio L, Civaia F, Rusek S, Dommerc C, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: comparison with 3 tesla cardiac magnetic resonance. Arch Cardiovasc Dis. 2017;110(11):580–9.

    PubMed  Google Scholar 

  37. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. J Am Coll Cardiol Img. 2016;9(7):769–82.

    Google Scholar 

  38. Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi M. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J Am Soc Echocardiogr. 2016;29(10):955–65.

    PubMed  Google Scholar 

  39. Haddad F, Doyle R, Murphy Daniel J, Hunt SA. Right ventricular function in cardiovascular disease, Part II. Circulation. 2008;117(13):1717–31.

    PubMed  Google Scholar 

  40. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713 quiz 86–8.

    PubMed  Google Scholar 

  41. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–91.

    PubMed  Google Scholar 

  42. Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med. 2016;73:47–55.

    PubMed  Google Scholar 

  43. Jeganathan J, Knio Z, Amador Y, Hai T, Khamooshian A, Matyal R, et al. Artificial intelligence in mitral valve analysis. Ann Card Anaesth. 2017;20(2):129–34.

    PubMed  PubMed Central  Google Scholar 

  44. Playford D, Bordin E, Talbot L, Mohamad R, Anderson B, Strange G. Analysis of aortic stenosis using artificial intelligence. Heart Lung Circ. 2018;27:S216.

    Google Scholar 

  45. Raghavendra U, Fujita H, Gudigar A, Shetty R, Nayak K, Pai U, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control. 2018;40:324–34.

    Google Scholar 

  46. Chykeyuk K, Clifton DA, Noble JA, editors. Feature extraction and wall motion classification of 2D stress echocardiography with relevance vector machines. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011 30 March-2 April 2011.

  47. Geleijnse ML, Krenning BJ, van Dalen BM, Nemes A, Soliman OI, Bosch JG, et al. Factors affecting sensitivity and specificity of diagnostic testing: dobutamine stress echocardiography. J Am Soc Echocardiogr. 2009;22(11):1199–208.

    PubMed  Google Scholar 

  48. Mansor S, Hughes NP, Noble JA. Wall motion classification of stress echocardiography based on combined rest-and-stress data. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):139–46.

    PubMed  Google Scholar 

  49. Omar HA, Domingos JS, Patra A, Upton R, Leeson P, Noble JA, editors. Quantification of cardiac bull’s-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018: IEEE.

  50. Zhou SK, Guo F, Park J, Carneiro G, Jackson J, Brendel M, et al., editors. A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure. 2007 IEEE 11th International Conference on Computer Vision; 2007: IEEE.

  51. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25(1):70–4.

    CAS  PubMed  Google Scholar 

  52. Hiemstra YL, Tomsic A, van Wijngaarden SE, Palmen M, Klautz RJM, Bax JJ, et al. Prognostic value of global longitudinal strain and etiology after surgery for primary mitral regurgitation. JACC Cardiovasc Imaging. 2019;3049.

  53. Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71(18):1947–57.

    PubMed  Google Scholar 

  54. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673–80.

    PubMed  Google Scholar 

  55. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–24.

    PubMed  Google Scholar 

  56. • Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, et al. Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning. JACC Cardiovasc Imaging. 2019;12(4):681–9 This study demonstrates the potential for ML algorithms to improve prognostic assessment in echocardiography when combined with clinical variables.

    PubMed  Google Scholar 

  57. Ernande L, Audureau E, Jellis CL, Bergerot C, Henegar C, Sawaki D, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol. 2017;70(14):1704–16.

    PubMed  Google Scholar 

  58. Salem Omar AM, Lancaster MC, Narula S, Baiomi A, Narula J, Sengupta P. Computational unsupervised clustering of echocardiographic variables for the assessment of diastolic dysfunction severity. J Am Coll Cardiol. 2018;71(11 Supplement):A1519.

    Google Scholar 

  59. Omar AMS, Narula S, Abdel Rahman MA, Pedrizzetti G, Raslan H, Rifaie O, et al. Precision phenotyping in heart failure and pattern clustering of ultrasound data for the assessment of diastolic dysfunction. J Am Coll Cardiol Img. 2017;10(11):1291–303.

    Google Scholar 

  60. • Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance. JACC cardiovascular imaging. 2019;12(7 Pt 1):1149–61 This is an interesting paper demonstrating the utility of unsupervised ML using clustering techniques to predict cardiovascular outcomes among patients undergoing echocardiographic assessment of diastolic function.

    PubMed  Google Scholar 

  61. Khan S, Rahmani H, Shah SAA, Bennamoun M. A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision. 2018;8(1):1–207.

    Google Scholar 

  62. Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med. 2018;1(1):59.

    PubMed  PubMed Central  Google Scholar 

  63. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2017;2406.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Dwivedi.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahungu, N., Trueick, R., Bhat, S. et al. Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography. Curr Cardiovasc Imaging Rep 13, 5 (2020). https://doi.org/10.1007/s12410-020-9529-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-020-9529-x

Keywords

Navigation