Skip to main content
Log in

Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair

  • Echocardiography (T Buck, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

In the last few years, the development of new techniques enabling visualization and quantification of flow behavior inside cardiac chambers has increased the interest in flow mechanics, blood-tissue interaction, and the potential application of these new data to diagnosis and guidance of treatment. Several studies have focused on flow dynamics inside the left ventricle and a differential aspect in it: the vortex ring. In this article, we briefly describe the key role of the mitral valve on the generation of physiologic flow dynamics. We also review how mitral valve disease and its treatment can influence the distribution of flow inside the left ventricle and its potential clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging. 2012;5:305–16. First review on different methods for cardiovascular flow imaging. Good overview.

    Article  PubMed  Google Scholar 

  2. Rodriguez Muñoz D, Markl M, Moya Mur JL, et al. Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging. 2013;14:1029–38. Another review. Update on the previous reference and focus on potential clinical applications.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hong GR, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Img. 2008;1:705–17.

    Article  Google Scholar 

  4. Rodriguez Muñoz D, Moya Mur JL, Fernández-Golfín C, et al. Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography. 2015;32:96–105.

    Article  PubMed  Google Scholar 

  5. Kheradvar A, Pedrizzetti G. Vortex formation in the cardiovascular system. London: Springer; 2012.

    Book  Google Scholar 

  6. Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:741–7.

    Article  PubMed  Google Scholar 

  7. Pedrizetti G, Domenechini F. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett. 2005;95:108101.

    Article  Google Scholar 

  8. Charonko JJ, Kumar R, Stewart K, et al. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann Biomed Eng. 2013;41:1049–61.

    Article  PubMed  Google Scholar 

  9. Martinez-Legazpi P, Bermejo J, Benito Y, et al. Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol. 2014;64:1711–21. Excellent study for clarification and quantification of vortex contribution to cardiac output.

    Article  PubMed  Google Scholar 

  10. Gharib M, Rambod E, Kheradvar A, et al. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci. 2006;103:6305–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng. 2009;37:1–13.

    Article  PubMed  Google Scholar 

  12. Belohlavek M. Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency. Eur Heart J Cardiovasc Imaging. 2012;13:367–9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kheradvar A, Assadi R, Falahatpisheh A, et al. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J Am Soc Echocardiogr. 2012;25:220–7.

    Article  PubMed  Google Scholar 

  14. Stewart KC, Charonko JC, Niebel CL, et al. Left ventricular vortex formation is unaffected by diastolic impairment. Am J Physiol Heart Circ Physiol. 2012;303:H1255–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pasipoularides A, Vlachos PP, Little WC. Vortex formation time is not an index of ventricular function. J Cardiovasc Transl Res. 2015;8:54–8.

    Article  PubMed  Google Scholar 

  16. Ro R, Halpern D, Sahn DJ, et al. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic Leith ventricular flow and the mitral valve. J Am Coll Cardiol. 2014;64:1984–95. Recent study to better understand the interaction between the mechanics of left ventricular flow and structure.

    Article  PubMed  Google Scholar 

  17. Kilner PJ, Yang GZ, Wilkes AJ, et al. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.

    Article  CAS  PubMed  Google Scholar 

  18. Ohtsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J Visual. 2006;9:69–82.

    Article  Google Scholar 

  19. Uejima T, Koike A, Sawada H, et al. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med Biol. 2010;36:772–88.

    Article  PubMed  Google Scholar 

  20. Itatani K, Okada T, Uejima T, et al. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.

    Article  Google Scholar 

  21. Itatani K. When the blood flow becomes bright. Eur Heart J. 2014;35:747–752a.

    PubMed  Google Scholar 

  22. Hayashi T, Itatani K, Inuzuka R, et al. Dissipative energy loss within the left ventricle detected by vector flow zapping in children: normal values and effects of age and heart rate. J Cardiol. 2015 Jan 13.

  23. Eriksson J, Carlhall CJ, Dyverfeldt P, et al. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Toger J, Kanski M, Carlsson M, et al. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng. 2012;40:2652–62.

    Article  PubMed  Google Scholar 

  25. Kheradvar A, Houle H, Pedrizzetti G, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr. 2010;23:86–94.

    Article  PubMed  Google Scholar 

  26. Garcia D, del Alamo JC, Tanne D, et al. Two dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;10:1701–13.

    Article  Google Scholar 

  27. Mehregan F, Tournoux F, Muth S, et al. Doppler vortography: a color Doppler approach to quantification of intraventricular blood flow vértices. Ultrasound Med Biol. 2014;40:210–21.

    Article  PubMed  Google Scholar 

  28. Sengupta PP, Narula J, Chandrashekhar Y. The dynamic vortex of a beating heart: wring out the old and ring in the new. J Am Coll Cardiol. 2014;64:1722–4.

    Article  PubMed  Google Scholar 

  29. Rodriguez Muñoz D, Moya Mur JL, Lozano Granero C, et al. Flow collision in early aortic ejection: an additional source of kinetic energy loss in patients with mitral prosthetic valves. Eur Heart J Cardiovasc Imaging. 2015;16:608.

    Article  PubMed  Google Scholar 

  30. Witschey WR, Zhang D, Contijoch F, et al. The influence of mitral annuloplasty on left ventricular flow dynamics. Ann Thorac Surg. 2015 May 12.

  31. Karagöz A, Elalmis ÖU, Cicekcioglu H, et al. Aneurysm of the basal interventricular septum secondary to turbulent flow jet from a mitral prosthetic valve. Hell J Cardiol. 2015;56:98–9.

    Google Scholar 

  32. Rodriguez Muñoz D, Moya Mur JL, Becker Filho DC, et al. Flow mapping inside a left ventricular aneurism: a potential tool to demonstrate thrombogenicity. Echocardiography. 2014;31:E10–2.

    Article  PubMed  Google Scholar 

  33. Li C, Zhang J, Li X, et al. Quantification of chronic aortic regurgitation by vector flow mapping: a novel echocardiographic method. Eur J Echocardiogr. 2010;11:119–24.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Daniel Rodríguez Muñoz, Cristina Lozano Granero, and José Luis Zamorano declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rodríguez Muñoz.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, D.R., Granero, C.L. & Zamorano, J.L. Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair. Curr Cardiovasc Imaging Rep 8, 41 (2015). https://doi.org/10.1007/s12410-015-9358-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9358-5

Keywords

Navigation