Skip to main content

Advertisement

Log in

Comparison of Emerging Technologies to Extract High-Added Value Compounds from Fruit Residues: Pressure- and Electro-Based Technologies

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Fruit consumption has significantly increased due to their attractive sensory properties and the growing recognition of its nutritional and therapeutic values. Nevertheless, several tons of fruits are processed by the food industry for the production of different products such as juices and jams, leading to the production of a great amount of fruit waste. Until a few decades ago, fruit residues were not considered a cost neither a benefit but resulted in a significant negative impact on the environment, ending up being used as animal feed, brought to landfills or sent to composting sites. The extraction of high-added value compounds from fruit residues is usually done through conventional methods, such as Soxhlet, hydrodistillation, maceration, and enzyme-assisted extraction. Although these methods are easy to perform and cheap to operate, they present several concerns mainly due to thermo-sensible compound degradation and environment pollution. Recently, new extraction technologies have been in development to improve extraction of high-value compounds, such as high pressure, pressurized liquid extraction, instantly controlled pressure drop, pulse electric fields, and high-voltage electrical discharges, as well its combinations between each other’s. These technologies are considered environmentally friendly, allow the use of lower amounts of organic solvents and the reduction in extraction time and energetic consumption, conducting to higher yields and high-quality final extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allaf K, Besombes C, Kristiawan M, Sobolik V (2009) Extraction mechanisms of essential oils; in essential oils: green extraction and applications. Singh Bhalla (JEOBP), DehraDun, India

  2. Allaf T, Mounir S, Tomao V, Chemat F (2012) Instant controlled pressure drop combined to ultrasounds as innovative extraction process combination: fundamental aspects. Procedia Eng 42:1061–1078

    Article  CAS  Google Scholar 

  3. Allaf T, Tomao V, Besombes C, Chemat F (2013a) Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization. Chem Eng Process 72:24–30

    Article  CAS  Google Scholar 

  4. Allaf T, Tomao V, Ruiz K, Chemat F (2013b) Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants. Ultrason Sonochem 20:239–246

    Article  CAS  Google Scholar 

  5. Almeida ML, Freitas WE, Morais PL, Sarmento JD, Alves RE (2016) Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem 192:1078–1082

    Article  CAS  Google Scholar 

  6. Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F (2001) Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr 933:37–43

    Article  CAS  Google Scholar 

  7. Ayala-Zavala JF et al (2011) Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res Int 44:1866–1874

    Article  CAS  Google Scholar 

  8. Azabou S, Abid Y, Sebii H, Felfoul I, Gargouri A, Attia H (2016) Potential of the solid-state fermentation of tomato by products by Fusarium solani pisi for enzymatic extraction of lycopene. LWT - Food Sci Technol 68:280–287

    Article  CAS  Google Scholar 

  9. Azmir J et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  10. Babbar N, Oberoi HS, Sandhu SK (2015) Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Crc Cr Rev Food Sci 55:319–337

  11. Balu AM, Budarin V, Shuttleworth PS, Pfaltzgraff LA, Waldron K, Luque R, Clark JH (2012) Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. ChemSusChem 5:1694–1697

    Article  CAS  Google Scholar 

  12. Barba FJ, Brianceau S, Turk M, Boussetta N, Vorobiev E (2015) Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Tech 8:1139–1148

    Article  CAS  Google Scholar 

  13. Barba FJ, Zhu Z, Koubaa M, Sant'Ana AS, Orlien V (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Tech 49:96–109

    Article  CAS  Google Scholar 

  14. Berradre M, Arias N, Ojeda GR, Sulbarán B, Fernández V, Peña J (2014) Oil antioxidant activity of grape seeds Vitis vinifera of Tempranillo variety. Rev Fac Agron 31:393–406

    Google Scholar 

  15. Bertucco A, Vetter G (2001) High pressure process technology: fundamentals and applications vol 9. Elsevier Science,

  16. Besombes C, Berka-Zougali B, Allaf K (2010) Instant controlled pressure drop extraction of lavandin essential oils: fundamentals and experimental studies. J Chromatogr A 1217:6807–6815

    Article  CAS  Google Scholar 

  17. Bhandary SK, Kumari N, Bhat VS, Sharmila K, Bekal MP (2012) Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J Health Sci 2:35–38

    Google Scholar 

  18. Bobinaitė R, Pataro G, Lamanauskas N, Šatkauskas S, Viškelis P, Ferrari G (2014) Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Tech 52:5898–5905

    Article  CAS  Google Scholar 

  19. Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N, Chemat F (2015) Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason Sonochem 24:72–79

    Article  CAS  Google Scholar 

  20. Boussetta N, Lesaint O, Vorobiev E (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg 19:124–132

    Article  CAS  Google Scholar 

  21. Boussetta N, Vorobiev E, Deloison V, Pochez F, Falcimaigne-Cordin A, Lanoisellé JL (2011) Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chem 128:364–370

    Article  CAS  Google Scholar 

  22. Boussetta N, Vorobiev E, Reess T, Ferron A, Pecastaing L, Ruscassié R, Lanoisellé JL (2012) Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: effect of the dynamic shock waves. Innov Food Sci Emerg 16:129–136

    Article  CAS  Google Scholar 

  23. Brianceau S, Turk M, Vitrac X, Vorobiev E (2015) Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innov Food Sci Emerg 29:2–8

    Article  CAS  Google Scholar 

  24. Briones-Labarca V, Plaza-Morales M, Giovagnoli-Vicuña C, Jamett F (2015) High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: effects of extraction conditions and methods. LWT-Food Sci Tech 60:525–534

    Article  CAS  Google Scholar 

  25. Cam M, Hisil Y (2010) Pressurised water extraction of polyphenols from pomegranate peels. Food Chem 123:878–885

    Article  CAS  Google Scholar 

  26. Casazza AA, Aliakbarian B, Mantegna S, Cravotto G, Perego P (2010) Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J Food Eng 100:50–55

    Article  CAS  Google Scholar 

  27. Casquete R, Castro SM, Martín A, Ruiz-Moyano S, Saraiva JA, Córdoba MG, Teixeira P (2015) Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov Food Sci Emerg 31:37–44

    Article  CAS  Google Scholar 

  28. Casquete R et al (2014) High pressure extraction of phenolic compounds from citrus peels. High Pressure Res 34:447–451

    Article  CAS  Google Scholar 

  29. Chemat F, Fabiano-Tixier AS, Vian MA, Allaf T, Vorobiev E (2015) Solvent-free extraction of food and natural products. TRAC-Trend Anal Chem 71:157–168

    Article  CAS  Google Scholar 

  30. Chemat F, Li Y, Tomao V, Ginies C, Cravotto G (2014) Optimization of procedures for in-line extraction of lipids and polyphenols from grape seeds. Food Anal Method 7:459–464

    Article  Google Scholar 

  31. Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102:77–81

    Article  CAS  Google Scholar 

  32. Corrales M, García AF, Butz P, Tauscher B (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng 90:415–421

    Article  CAS  Google Scholar 

  33. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg 9:85–91

    Article  CAS  Google Scholar 

  34. Costa MCD, Regina M, Filho MC, Linde GA, Valle JS, Paccola-Meirelles LD, Colauto NB (2015) Photoprotective and antimutagenic activity of Agaricus subrufescens Basidiocarp extracts. Curr Microbiol 71:476–482

    Article  CAS  Google Scholar 

  35. Cravotto G, Bicchi C, Mantegna S, Binello A, Tomao V, Chemat F (2011) Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques. Nat Prod Research 25:974–981

    Article  CAS  Google Scholar 

  36. Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K (2013) Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind Crop Prod 50:77–87

    Article  CAS  Google Scholar 

  37. de Camargo AC, Regitano-d’Arce MAB, Biasoto ACT, Shahidi F (2016) Enzyme-assisted extraction of phenolics from winemaking by-products: antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chem 212:395–402

    Article  CAS  Google Scholar 

  38. Djenane D (2015) Chemical profile, antibacterial and antioxidant activity of algerian citrus essential oils and their application in Sardina pilchardus. Foods 4:208–228

    Article  Google Scholar 

  39. Donsì F, Ferrari G, Pataro G (2010) Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng Rev 2:109–130

    Article  CAS  Google Scholar 

  40. Dorta E, González M, Lobo MG, Sánchez-Moreno C, de Ancos B (2014) Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res Int 57:51–60

    Article  CAS  Google Scholar 

  41. Dorta E, Lobo MG, González M (2012) Using drying treatments to stabilise mango peel and seed: effect on antioxidant activity. LWT-Food Sci Technol 45:261–268

    Article  CAS  Google Scholar 

  42. Dorta E, Lobo MG, González M (2013) Optimization of factors affecting extraction of antioxidants from mango seed. Food Bioprocess Tech 6:1067–1081

    Article  CAS  Google Scholar 

  43. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crop Prod 75:141–149

    Article  CAS  Google Scholar 

  44. El-Malah MH, Hassanein MMM, Areif MH, Al-Amrousi EF (2015) Utilization of Egyptian tomato waste as a potential source of natural antioxidants using solvents, microwave and ultrasound extraction methods. Am. J Food Technol 10:14–25

    Article  CAS  Google Scholar 

  45. EPA (2015) Enviromental Protection Agency, USA. http://www.epa.gov/greenchemistry/pubs/about_gc.html.

  46. Franco-Vega A, Ramírez-Corona N, Palou E, López-Malo A (2016) Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. J Food Eng 170:136–143

    Article  CAS  Google Scholar 

  47. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Tech 26:68–87

    Article  CAS  Google Scholar 

  48. Gambutti A, Capuano R, Lecce L, Fragasso MG, Moio L (2009) Extraction of phenolic compounds from ‘Aglianico’ and ‘Uva di Troia’ grape skins and seeds in model solutions: influence of ethanol and maceration time. Vitis 48:193

  49. Garcia-Mendoza MP, Paula JT, Paviani LC, Cabral FA, Martinez-Correa HA (2015) Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT-Food Sci Tech 62:131–137

    Article  CAS  Google Scholar 

  50. Giuffrè AM, Capocasale M (2015) Policosanol in tomato (Solanum lycopersicum L.) seed oil: the effect of cultivar. J Oleo Sci 64:625–631

    Article  CAS  Google Scholar 

  51. Gök A, İsmail Kirbaşlar Ş, Gülay Kirbaşlar F (2015) Comparison of lemon oil composition after using different extraction methods. J Essent Oil Res 27:17–22

    Article  CAS  Google Scholar 

  52. Goula AM (2013) Ultrasound-assisted extraction of pomegranate seed oil—kinetic modeling. J Food Eng 117:492–498

    Article  Google Scholar 

  53. Goula AM, Adamopoulos KG (2012) A method for pomegranate seed application in food industries: seed oil encapsulation. Food Bioprod Process 90:639–652

    Article  CAS  Google Scholar 

  54. Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohyd Polym 88:441–448

    Article  CAS  Google Scholar 

  55. Guo X, Zhao W, Pang X, Liao X, Hu X, Wu J (2014) Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: a comparative study. Food Hydrocolloid 35:217–225

    Article  CAS  Google Scholar 

  56. Ho K, Ferruzzi M, Liceaga A, San Martín-González M (2015) Microwave-assisted extraction of lycopene in tomato peels: effect of extraction conditions on all-trans and cis-isomer yields. LWT-Food Sci Tech 62:160–168

    Article  CAS  Google Scholar 

  57. Hosni K et al (2010) Composition of peel essential oils from four selected Tunisian citrus species: evidence for the genotypic influence. Food Chem 123:1098–1104

    Article  CAS  Google Scholar 

  58. Huang H-W, Hsu C-P, Yang BB, Wang C-Y (2013) Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Tech 33:54–62

    Article  CAS  Google Scholar 

  59. Jang IC et al (2010) Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J Med Plants Res 4:155–160

    Google Scholar 

  60. Jun X (2006) Application of high hydrostatic pressure processing of food to extracting lycopene from tomato paste waste. High Pressure Res 26:33–41

    Article  CAS  Google Scholar 

  61. Jun X (2013) High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crc Cr Rev Food Sci 53:837–852

    Article  CAS  Google Scholar 

  62. Jun X, Deji S, Ye L, Rui Z (2011) Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control 22:1473–1476

    Article  CAS  Google Scholar 

  63. Kalpna R, Mital K, Sumitra C (2011) Vegetable and fruit peels as a novel source of antioxidants. J Med Plants Res 5:63–71

    Google Scholar 

  64. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields - a method for theoretical analysis and its application. Bioelectroch Bioener 45:3–16

    Article  CAS  Google Scholar 

  65. Kukeera T, Banadda N, Tumutegyereize P, Kiggundu N, Asuman R (2015) Extraction, quantification and characterization of oil from pumpkin seeds. Int J Agric Biol Eng 8:98

  66. Lebovka NI, Bazhal MI, Vorobiev E (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346

    Article  Google Scholar 

  67. Lee Y-H, Charles AL, Kung H-F, Ho C-T, Huang T-C (2010) Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind Crop Prod 31:59–64

    Article  CAS  Google Scholar 

  68. Li W, Wang Z, Wang YP, Jiang C, Liu Q, Sun YS, Zheng YN (2012) Pressurised liquid extraction combining LC-DAD-ESI/MS analysis as an alternative method to extract three major flavones in Citrus reticulata ‘Chachi’ (Guangchenpi). Food Chem 130:1044–1049

    Article  CAS  Google Scholar 

  69. Liazid A, Guerrero R, Cantos E, Palma M, Barroso C (2011) Microwave assisted extraction of anthocyanins from grape skins. Food Chem 124:1238–1243

    Article  CAS  Google Scholar 

  70. Liu D, Vorobiev E, Savoire R, Lanoisellé J-L (2011) Intensification of polyphenols extraction from grape seeds by high voltage electrical discharges and extract concentration by dead-end ultrafiltration. Sep Purif Technol 81:134–140

    Article  CAS  Google Scholar 

  71. Lopresto CG, Petrillo F, Casazza AA, Aliakbarian B, Perego P, Calabrò V (2014) A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Sep Purif Technol 137:13–20

    Article  CAS  Google Scholar 

  72. Luengo E, Álvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg 17:79–84

    Article  CAS  Google Scholar 

  73. M’hiri N, Ioannou I, Ghoul M, Boudhrioua NM (2014) Extraction methods of Citrus peel phenolic compounds. Food Rev Int 30:265–290

    Article  CAS  Google Scholar 

  74. M’hiri N, Ioannou I, Mihoubi Boudhrioua N, Ghoul M (2015) Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod Process 96:161–170

    Article  CAS  Google Scholar 

  75. Machado APF, Pasquel-Reategui JL, Fernandez Barbero G, Martinez J (2015) Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Res Int 77:675–683

    Article  CAS  Google Scholar 

  76. Majekodunmi SO (2015) Review of extraction of pharmaceutica. MRJMMS 3:521–527

    Google Scholar 

  77. Manasathien J, Indrapichate K, Intarapichet K-O (2012) Antioxidant activity and bioefficacy of pomegranate Punica granatum Linn. peel and seed extracts. GlobaJ Pharmacol 6:131–141

    Google Scholar 

  78. Masci A, Coccia A, Lendaro E, Mosca L, Paolicelli P, Cesa S (2016) Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem 202:59–69

    Article  CAS  Google Scholar 

  79. Medina-Meza IG, Barbosa-Cánovas GV (2015) Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. J Food Eng 166:268–275

    Article  CAS  Google Scholar 

  80. Medouni-Adrar S, Boulekbache-Makhlouf L, Cadot Y, Medouni-Haroune L, Dahmoune F, Makhoukhe A, Madani K (2015) Optimization of the recovery of phenolic compounds from Algerian grape by-products. Ind Crop Prod 77:123–132

    Article  CAS  Google Scholar 

  81. Mushtaq M, Sultana B, Bhatti HN, Asghar M (2015) RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. J Food Sci Tech Mys 52:5048–5056

    Article  CAS  Google Scholar 

  82. Mushtaq M, Sultana B, Bhatti HN, Asgher M (2014) Optimization of enzyme-assisted revalorization of sweet lime (Citrus limetta Risso) peel into phenolic antioxidants vol 9. 2014, vol 4.

  83. Naghshineh M, Olsen K, Georgiou CA (2013) Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem 136:472–478

    Article  CAS  Google Scholar 

  84. Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M (2015a) Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem 187:507–516

    Article  CAS  Google Scholar 

  85. Nayak B, Liu RH, Tang J (2015b) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review. CRC Cr rev. Food Sci 55:887–919

    CAS  Google Scholar 

  86. Paes J, Dotta R, Barbero GF, Martinez J (2014) Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J Supercrit Fluid 95:8–16

    Article  CAS  Google Scholar 

  87. Papargyropoulou E, Lozano RK, Steinberger J, Wright N, Ujang ZB (2014) The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod 76:106–115

    Article  Google Scholar 

  88. Parniakov O, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2014) Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Res Int 65:337–343

    Article  CAS  Google Scholar 

  89. Parniakov O, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2016) Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chem 192:842–848

    Article  CAS  Google Scholar 

  90. Parniakov O, Roselló-Soto E, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2015) New approaches for the effective valorization of papaya seeds: extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Res Int 77:711–717

    Article  CAS  Google Scholar 

  91. Pedroza MA, Amendola D, Maggi L, Zalacain A, De Faveri DM, Spigno G (2015) Microwave-assisted extraction of phenolic compounds from dried waste grape skins. Int J Food Eng 11:359–370

    CAS  Google Scholar 

  92. Pereira RN, Vicente AA (2010) Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res Int 43:1936–1943

    Article  Google Scholar 

  93. Pinelo M, Zornoza B, Meyer AS (2008) Selective release of phenols from apple skin: mass transfer kinetics during solvent and enzyme-assisted extraction. Sep Purif Technol 63:620–627

    Article  CAS  Google Scholar 

  94. Pingret D, Fabiano-Tixier AS, Chemat F (2014) An improved ultrasound Clevenger for extraction of essential oils. Food Anal Method 7:9–12

    Article  Google Scholar 

  95. Plaza M, Abrahamsson V, Turner C (2013) Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. J Agr Food Chem 61:5500–5510

    Article  CAS  Google Scholar 

  96. Prasad KN, Yang B, Zhao M, Sun J, Wei X, Jiang Y (2008) Effects of high pressure or ultrasonic treatment on extraction yield and antioxidant activity on pericarp tissues of longan fruit. J Food Biochem 34:838–855

    Google Scholar 

  97. Prasad KN, Yang B, Zhao MM, Wei XY, Jiang YM, Chen F (2009a) High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Sep Purif Technol 70:41–45

    Article  CAS  Google Scholar 

  98. Prasad KN, Yang E, Yi C, Zhao MM, Jiang YM (2009b) Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov Food Sci Emerg 10:155–159

    Article  CAS  Google Scholar 

  99. Puértolas E, Luengo E, Álvarez I, Raso J (2012) Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications. Annu Rev of Food Sci Technol 3:263–282

  100. Qu W, Pan Z, Ma H (2010) Extraction modeling and activities of antioxidants from pomegranate marc. J Food Eng 99:16–23

    Article  Google Scholar 

  101. Rajha HN, Ziegler W, Louka N, Hobaika Z, Vorobiev E, Boechzelt HG, Maroun RG (2014) Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int J Mol Sci 15:18640–18658

    Article  CAS  Google Scholar 

  102. Raso J, Heinz V (2006) Pulsed electric fields technology for the food industry: fundamentals and applications. Food Engineering. Springer US

  103. Reis LC, Carneiro LM, Branco CR, Branco A (2015) Comparison of conventional microwave and focused microwave-assisted extraction to enhance the efficiency of the extraction of antioxidant flavonols from jocote pomace (Spondias purpurea L). Plant Food Hum Nutr 70:160–169

    Article  CAS  Google Scholar 

  104. Rosello-Soto E, Barba FJ, Parniakov O, Galanakis CM, Lebovka N, Grimi N, Vorobiev E (2015) High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food Bioprocess Tech 8:885–894

    Article  CAS  Google Scholar 

  105. Ruiz-Montanez G, Ragazzo-Sanchez JA, Calderon-Santoyo M, Velazquez-de la Cruz G, Ramirez de Leon JA, Navarro-Ocana A (2014) Evaluation of extraction methods for preparative scale obtention of mangiferin and lupeol from mango peels (Mangifera indica L). Food Chem 159:267–272

    Article  CAS  Google Scholar 

  106. Sá M, Justino V, Spranger M, Zhao Y, Han L, Sun B (2014) Extraction yields and antioxidant activity of proanthocyanidins from different parts of grape pomace: effect of mechanical treatments. Phytochem Analysis 25:134–140

    Article  CAS  Google Scholar 

  107. Sahraoui N, Vian MA, El Maataoui M, Boutekedjiret C, Chemat F (2011) Valorization of citrus by-products using microwave steam distillation (MSD). Innov Food Sci Emerg 12:163–170

    Article  CAS  Google Scholar 

  108. Sánchez-Valdepeñas V, Barrajón E, Vegara S, Funes L, Martí N, Valero M, Saura D (2015) Effect of instant controlled pressure drop (DIC) pre-treatment on conventional solvent extraction of phenolic compounds from grape stalk powder. Ind Crop Prod 76:545–549

    Article  CAS  Google Scholar 

  109. Santos DT, Veggi PC, Meireles MAA (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng 108:444–452

    Article  CAS  Google Scholar 

  110. Seidel V (2006) Initial and bulk extraction. In: Sarker SD, Latif Z, Gray A (eds) Natural Products Isolation. Humana Press, New Jersey, pp 27–46

  111. Shahid M, Dar F, Ismaeel AY, Al-Mahmeed A, Sindi KA, Malik A, Khan HM (2013) Plant natural products as a potential source of antimicrobial agents: an overview and a glimpse on recent developments. In: Shahid M, Shahzad A, Malik A, Sahai A (eds) Recent trends in biotechnology and therapeutic applications of medicinal plants, vol 93–107. Springer, Netherlands,

  112. Shouqin Z, Ruizhan C, Changzheng W (2007) Experiment study on ultrahigh pressure extraction of ginsenosides. J Food Eng 79:1–5

    Article  CAS  Google Scholar 

  113. Silva LV, Nelson DL, Drummond MFB, Dufossé L, Glória MBA (2005) Comparison of hydrodistillation methods for the deodorization of turmeric. Food Res Int 38:1087–1096

    Article  CAS  Google Scholar 

  114. Singh J, Sood S, Muthuraman A (2014) In-vitro evaluation of bioactive compounds, anti-oxidant, lipid peroxidation and lipoxygenase inhibitory potential of Citrus karna L. peel extract. J Food Sci Tech 51:67–74

    Article  CAS  Google Scholar 

  115. Statista (2015a) Global production of fresh fruit from 1990 to 2013 (in 1,000 metric tons). from http://www.statistacom/statistics/262266/global-production-of-fresh-fruit/

  116. Statista (2015b) Global fruit production in 2013, by region (in million metric tons). from http://www.statistacom/statistics/264004/fruit-production-worldwide-since-2007-by-region/

  117. Šťavíková L, Polovka M, Hohnová B, Karásek P, Roth M (2011) Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta 85:2233–2240

    Article  CAS  Google Scholar 

  118. Strati IF, Gogou E, Oreopoulou V (2015) Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod Process 94:668–674

    Article  CAS  Google Scholar 

  119. Sun H, Ni H, Yang Y, Chen F, Cai H, Xiao A (2014) Sensory evaluation and gas chromatography–mass spectrometry (GC-MS) analysis of the volatile extracts of pummelo (Citrus maxima) peel. Flavour Frag J 29:305–312

    Article  CAS  Google Scholar 

  120. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  Google Scholar 

  121. Tunchaiyaphum S, Eshtiaghi M, Yoswathana N (2013) Extraction of bioactive compounds from mango peels using green technology. Int J Chem Eng App 4:194

    CAS  Google Scholar 

  122. Uysal B, Sozmen F, Aktas O, Oksal BS, Kose EO (2011) Essential oil composition and antibacterial activity of the grapefruit (Citrus Paradisi. L) peel essential oils obtained by solvent-free microwave extraction: comparison with hydrodistillation. Int J Food Sci Tech 46:1455–1461

    Article  CAS  Google Scholar 

  123. Vankar P (2004) Essential oils and fragrances from natural sources. Resonance 9:30–41

    Article  CAS  Google Scholar 

  124. Vega-Vega V et al (2013) Antimicrobial and antioxidant properties of byproduct extracts of mango fruit. J Appl Bot Food Qual 86:205–211

    Google Scholar 

  125. Veggi PC, Martinez J, Meireles AA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice, vol 4. Food Engineering. Springer Science, p 240

  126. Vergara-Salinas JR et al (2013) Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J Agr Food Chem 61:6929–6936

    Article  CAS  Google Scholar 

  127. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Tech 17:300–312

    Article  CAS  Google Scholar 

  128. Welti-Chanes J, Vergara-Balderas F, Bermúdez-Aguirre D (2005) Transport phenomena in food engineering: basic concepts and advances. J Food Eng 67:113–128

    Article  Google Scholar 

  129. Wijngaard H, Brunton N (2009) The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J Agr Food Chem 57:10625–10631

    Article  CAS  Google Scholar 

  130. Wu D et al (2015) Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. juice by-products. Ind Crop Prod 66:229–238

    Article  CAS  Google Scholar 

  131. Xhaxhiu K, Korpa A, Mele A, Kota T (2013) Ultrasonic and Soxhlet extraction characteristics of the orange peel from “Moro” cultivars grown in Albania. J Essent Oil Bear Pl 16:421–428

    Article  Google Scholar 

  132. Xi J (2006) Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chem Eng Technol 29:736–739

    Article  CAS  Google Scholar 

  133. Xu C, Yagiz Y, Borejsza-Wysocki W, Lu J, Gu L, Ramirez-Rodrigues MM, Marshall MR (2014) Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food Chem 157:20–29

    Article  CAS  Google Scholar 

  134. Yang B, Jiang Y, Shi J, Chen F, Ashraf M (2011) Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—a review. Food Res Int 44:1837–1842

    Article  CAS  Google Scholar 

  135. Zito P, Sajeva M, Bruno M, Rosselli S, Maggio A, Senatore F (2013) Essential oils composition of two Sicilian cultivars of Opuntia ficus-indica (L.) Mill.(Cactaceae) fruits (prickly pear). Nat Prod Res 27:1305–1314

    Article  CAS  Google Scholar 

  136. Zuorro A, Fidaleo M, Lavecchia R (2011) Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb Tech 49:567–573

    Article  CAS  Google Scholar 

  137. Zuorro A, Lavecchia R, Medici F, Piga L (2013) Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Tech 6:3499–3509

    Article  CAS  Google Scholar 

  138. Zuorro A, Lavecchia R, Medici F, Piga L (2014) Use of cell wall degrading enzymes for the production of high-quality functional products from tomato processing waste. Chem Eng Trans 38:355–360

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Funds from FCT–Fundação para a Ciência e a Tecnologia through project PEst-OE/EQB/LA0016/2013 and by FCT/MEC by the financial support to the QOPNA research Unit (FCT UID/QUI/00062/2013), through national funds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement. Authors Elisabete M.C. Alexandre and Silvia A. Moreira are grateful for the financial support of this work from FCT through the Post-doctoral Grant SFRH/BPD/95795/2013 and the Doctoral Grant SFRH/BD/110430/2015, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Saraiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandre, E.M.C., Castro, L.M.G., Moreira, S.A. et al. Comparison of Emerging Technologies to Extract High-Added Value Compounds from Fruit Residues: Pressure- and Electro-Based Technologies. Food Eng Rev 9, 190–212 (2017). https://doi.org/10.1007/s12393-016-9154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9154-2

Keywords

Navigation