Skip to main content
Log in

Molecular insights into the function of ankyrin proteins in plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Ankyrin (ANK) repeat domain-containing proteins comprise one of the largest known protein superfamilies in all species including plants. Recently, several genomeanalysis studies have provided valuable information on the structure of ANK proteins in plants. Among the 13 subgroups based on the presence of various additional domains in addition to the ANK domain, the E3 ubiquitin ligase activity and transcriptional regulation functions of ANK-RF and ANK-ZF subgroup members, respectively, are relatively well understood. NPR1 (nonexpressor of pathogenesis-related1), a key regulator of systemic acquired resistance in Arabidopsis, is a noteworthy member of the ANK-BTB subgroup; however, ANK-M and ANK-TM, the two main subgroups, have been less functionally characterized. With the ability to mediate protein-protein interactions, the majority of plant ANK proteins play crucial roles in defense responses and, on occasion, functions in growth and development. In this review, we summarize on the current knowledge of plant ANK superfamily members and focus on ANK proteins involved in defense responses. In addition, we provide a valuable framework for the future functional characterization of ANK genes with current unknown function in rice, a model crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28–44

    Article  CAS  PubMed  Google Scholar 

  • Albert S, Després B, Guilleminot J, Bechtold N, Pelletier G, Delseny M, Devic M (1999) TheEMB506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J 17:169–179

    Article  CAS  PubMed  Google Scholar 

  • Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I (2008) AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10: 220–227

    Article  CAS  PubMed  Google Scholar 

  • Bardwell VJ, Treisman R (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8:1664–1677

    Article  CAS  PubMed  Google Scholar 

  • Batistiè O (2012) Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. Plant Physiol 160:1597–1612

    Article  CAS  Google Scholar 

  • Becerra C, Jahrmann T, Puigdomènech P, Vicient CM (2004) Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene 340:111–121

    Article  CAS  PubMed  Google Scholar 

  • Blanvillain R, Wei S, Wei P, Kim JH, Ow DW (2011) Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J 30:3812–3822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Böttner S, Iven T, Carsjens CS, Dröge-Laser W (2009) Nuclear accumulation of the ankyrin repeat protein ANK1 enhances the auxin-mediated transcription accomplished by the bZIP transcription factors BZI-1 and BZI-2. Plant J 58:914–926

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    Article  PubMed  CAS  Google Scholar 

  • Breeden L, Nasmyth K (1987) Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329:651–659

    Article  CAS  PubMed  Google Scholar 

  • Canet JV, Dobón A, Fajmonová J, Tornero P (2012) The BLADEON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate. BMC Plant Biol 12:199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho SD, Saraiva R, Maia TM, Abreu IA, Duque P (2012) XBAT35, a Novel Arabidopsis RING E3 Ligase Exhibiting Dual Targeting of Its Splice Isoforms, Is Involved in Ethylene-Mediated Regulation of Apical Hook Curvature. Mol Plant 5: 1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Bai W, Ruan D, Oh T, Chen X, Ronald PC (2014) Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins. BMC Genomics 15: 461

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18:511–520

    Article  CAS  PubMed  Google Scholar 

  • Cui Y-L, Jia Q-S, Yin Q-Q, Lin G-N, Kong M-M, Yang Z-N (2011) The GDC1 gene encodes a novel ankyrin domain-containing protein that is essential for grana formation in Arabidopsis. Plant Physiol 155:130–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng-wei J, Min C, Qing Y (2014) Cloning and characterization of a Solanum torvum NPR1 gene involved in regulating plant resistance to Verticillium dahliae. Acta Physiol Plant 36:2999–3011

    Article  CAS  Google Scholar 

  • Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong X (2004a) NPR1, all things considered. Curr Opin Plant Biol 7: 547–552

    Article  CAS  PubMed  Google Scholar 

  • Dong X (2004b) The role of membrane-bound ankyrin-repeat protein ACD6 in programmed cell death and plant defense. Sci STKE 2004:pe6

    PubMed  Google Scholar 

  • Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013) Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J 74:294–309

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald HA, Chern M-S, Navarre R, Ronald PC (2004) Overexpression of (At) NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol Plant-Microbe Interact 17:140–151

    Article  CAS  PubMed  Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant-Microbe Interact 16:132–140

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H (2008) Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett 582:943–948

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Li H-Y, Xiao S, Chye M-L (2010a) Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis. Plant Signal Behav 5:1025–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao W, Li HY, Xiao S, Chye ML (2010b) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62:989–1003

    CAS  PubMed  Google Scholar 

  • Garcion C, Guilleminot J, Kroj T, Parcy F, Giraudat J, Devic M (2006) AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J 48:895–906

    Article  CAS  PubMed  Google Scholar 

  • Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210:723–731

    Article  CAS  PubMed  Google Scholar 

  • Hemsley PA, Kemp AC, Grierson CS (2005) The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918–921

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Chen F, Del Casino C, Autino A, Shen M, Yuan S, Peng J, Shi H, Wang C, Cresti M (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol 140: 1374–1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Zhao X, Yu H, Ouyang Y, Wang L, Zhang Q (2009) The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling. Plant Mol Biol 71:207–226

    Article  CAS  PubMed  Google Scholar 

  • Jaru-Ampornpan P, Liang F-C, Nisthal A, Nguyen TX, Wang P, Shen K, Mayo SL, Shan SO (2013) Mechanism of an ATP-independent protein disaggregase II. Distinct molecular interactions drive multiple steps during aggregate disassembly. J Biol Chem 288: 13431–13445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wu Q, Jin J, Sheng L, Yan H, Cheng B, Zhu S (2013a) Genome-wide identification and expression profiling of ankyrinrepeat gene family in maize. Dev Genes Evol 223:303–318

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen X, Ding X, Wang Y, Chen Q, Song WY (2013b) The XA21 binding protein XB25 is required for maintaining XA21- mediated disease resistance. Plant J 73:814–823

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DH, Park M-J, Gwon GH, Silkov A, Xu Z-Y, Yang EC, Song S, Song K, Kim Y, Yoon HS (2014) Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids. Dev Cell 30:598–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DH, Xu Z-Y, Na YJ, Yoo Y-J, Lee J, Sohn E-J, Hwang I (2011) Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. Plant Physiol 157:132–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci USA 100:1700–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H (2005) VAN3 ARF–GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–1711

    Article  CAS  PubMed  Google Scholar 

  • Krishna SS, Majumdar I, Grishin NV (2003) SURVEY AND SUMMARY: Structural classification of zinc fingers. Nucleic Acids Res 31:532–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhlmann M, Horvay K, Strathmann A, Heinekamp T, Fischer U, Böttner S, Dröge-Laser W (2003) The a-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem 278:8786–8794

    Article  CAS  PubMed  Google Scholar 

  • Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, Tabata S, Kouchi H (2007) A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol 143:1293–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin W-C, Lu C-F, Wu J-W, Cheng M-L, Lin Y-M, Yang N-S, Black L, Green SK, Wang J-F, Cheng C-P (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Triplett L, Liu J, Leach JE, Wang G-L (2014) Novel Insights into Rice Innate Immunity against Bacterial and Fungal Pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96: 11364–11369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu H, Liu Y, Greenberg JT (2005) Structure–function analysis of the plasma membrane-localized Arabidopsis defense component ACD6. Plant J 44:798–809

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Rate DN, Song JT, Greenberg JT (2003) ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15: 2408–2420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu H, Salimian S, Gamelin E, Wang G, Fedorowski J, LaCourse W, Greenberg JT (2009) Genetic analysis of acd6–1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. Plant J 58:401–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Booth JK, Stone SL (2012) The Arabidopsis RINGtype E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71:23–34

    Article  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin–proteasome system. J Exp Bot 64:2779–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N, Scheel D, Lee J (2014) The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol 55:412–425

    Article  CAS  PubMed  Google Scholar 

  • Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM (2014) Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC Plant Biol 14:96

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Michaely P, Bennett V (1992) The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell Biol 2: 127–129

    Article  CAS  PubMed  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng Zy (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mosavi LK, Minor DL, Peng Z-y (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 99:16029–16034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mou S, Liu Z, Guan D, Qiu A, Lai Y, He S (2013) Functional Analysis and Expressional Characterization of rice ankyrin repeat-containing protein, OsPIANK1, in basal defense against Magnaporthe oryzae attack. PloS one 8:e59699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MC, Fukuda H (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci USA 107:21890–21895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen TX, Jaru-Ampornpan P, Lam VQ, Cao P, Piszkiewicz S, Hess S, Shan SO (2013) Mechanism of an ATP-independent protein disaggregase I. Structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone. J Biol Chem 288:13420–13430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Caballero F, Martínez V, Rubio F (2012) Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53:423–432

    Article  CAS  PubMed  Google Scholar 

  • Nodzon LA, Xu WH, Wang Y, Pi LY, Chakrabarty PK, Song WY (2004) The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J 40:996–1006

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peck SC, Nühse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad BD, Goel S, Krishna P (2010a) In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and rice as putative co-chaperones of Hsp90/Hsp70. PloS one 5:e12761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prasad ME, Schofield A, Lyzenga W, Liu H, Stone SL (2010b) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153:1587–1596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad ME, Stone SL (2010) Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis. Plant Signal Behav 5:1425–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priya DB, Somasekhar N, Prasad J, Kirti P (2011) Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita. BMC research notes 4:231

    Article  PubMed Central  PubMed  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubtsov AM, Lopina OD (2000) Ankyrins. FEBS Lett 482:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ryan E, Grierson CS, Cavell A, Steer M, Dolan L (1998) TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytol 138:49–58

    Article  Google Scholar 

  • Sakamoto H, Matsuda O, Iba K (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in saltstress tolerance in Arabidopsis thaliana. Plant J 56:411–422

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316

    Article  CAS  PubMed  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang M-H (2007a) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363: 983–988

    Article  CAS  PubMed  Google Scholar 

  • Seong ES, Choi D, Cho HS, Lim CK, Cho HJ, Wang M (2007b) Characterization of a stress-responsive ankyrin repeat-containing zinc finger protein of Capsicum annuum (CaKR1). J Biochem Mol Biol 40:952–958

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H (2010) ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membranebound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22:811–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ (2010) Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10:248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription co-activator NPR1 plays dual roles in regulating plant immunity. Cell 137: 860–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stone JM, Liang X, Nekl ER, Stiers JJ (2005a) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41: 744–754

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005b) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugano S, Jiang C-J, Miyazawa S-I, Masumoto C, Yazawa K, Hayashi N, Shimono M, Nakayama A, Miyao M, Takatsuji H (2010) Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Mol Biol 74:549–562

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCHtype zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54:582–596

    Article  CAS  PubMed  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y-S, Pi L-Y, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu G-Z, Li L, Benny U, Oard J (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–3646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J, Schulz A, Geiger D, Hedrich R, Neuhaus HE (2011) A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. Plant J 68:890–900

    Article  CAS  PubMed  Google Scholar 

  • Wirdnam C, Motoyama A, Arn-Bouldoires E, van Eeden S, Iglesias A, Meins F (2004) Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. Plant Mol Biol 56:717–730

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang XZ, Tang YY, Yu HT, Ding YF, De Yang C, Cui FG, Zhang JC, Wang CT (2014) Molecular cloning and characterization of NPR1 gene from Arachis hypogaea. Mol Biol Rep 41:1–10

    Article  CAS  Google Scholar 

  • Wu T, Tian Z, Liu J, Yao C, Xie C (2009) A novel ankyrin repeat-rich gene in potato, Star, involved in response to late blight. Biochem Genet 47:439–450

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Chye M-L (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Jiang C-Z, Donnelly L, Reid MS (2007) Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. J Exp Bot 58:3623–3630

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Xiao S, Kim J, Lung S-C, Chen L, Tanner JA, Suh MC, Chye M-L (2014) Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot 65:5473–5483

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan J, Wang J, Zhang H (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah B (2002) A calmodulin-binding/CGCG box DNAbinding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Sun C, Hu Y, Lin Z (2008) Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci 33: 103–112

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang Y, Ding P, Johnson K, Li X, Zhang Y (2012) The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol 159:1857–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo J, Shin DH, Cho MH, Kim TL, Bhoo SH, Hahn TR (2011) An ankyrin repeat protein is involved in anthocyanin biosynthesis in Arabidopsis. Physiol Plant 142:314–325

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Shi J, Zhou J, Gu J, Chen Q, Li J, Cheng W, Mao D, Tian L, Buchanan BB (2010) ANK6, a mitochondrial ankyrin repeat protein, is required for male-female gamete recognition in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:22332–22337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan X, Zhang S, Liu S, Yu M, Su H, Shu H, Li X (2013a) Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants. PloS one 8:e58003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan X, Zhang S, Qing X, Sun M, Liu S, Su H, Shu H, Li X (2013b) Superfamily of ankyrin repeat proteins in tomato. Gene 523: 126–136

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotech J 5:313–324

    Article  CAS  Google Scholar 

  • Zhang H, Scheirer DC, Fowle WH, Goodman HM (1992) Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in Arabidopsis. Plant Cell 4: 1575–1588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X (2006) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48:647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/ OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant- Microbe Interact 13:191–202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Jeon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, K.T.X., Kim, CY., Chandran, A.K.N. et al. Molecular insights into the function of ankyrin proteins in plants. J. Plant Biol. 58, 271–284 (2015). https://doi.org/10.1007/s12374-015-0228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0228-0

Keywords

Navigation