Skip to main content
Log in

Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The compartment specific importance of ascorbate and glutathione was investigated during salt stress in Arabidopsis Col-0 and mutants deficient in ascorbate and glutathione (vtc2–1, pad2–1). This study demonstrated that higher sensitivity of the vtc2–1 mutants which showed leaf necrosis and lower biomass at the beginning of the salt stress experiment was correlated with lower basal ascorbate contents and a decrease in ascorbate contents in mitochondria (67%), peroxisomes (68%) and the cytosol (38%). Higher tolerance of pad2–1 mutants to salt stress throughout the first 10 days of the experiment could be correlated to a massive increase of glutathione contents (up to 740% in nuclei) in all cell compartments. A similar situation was found for wildtype plants which showed higher tolerance to salt stress at the beginning of the experiment which could be correlated with a strong increase of glutathione contents in mitochondria (39%), chloroplasts (up to 26%) and peroxisomes (up to 84%) indicating an important role of glutathione in the protection of these cell compartments against salt stress. Summing up, the results demonstrate that higher tolerance to salt stress of wildtype plants and pad2–1 mutants at the beginning of the experiment could be correlated to increased glutathione contents which could not be found in vtc2–1 mutants which in addition showed lower ascorbate contents and higher sensitivity to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266

    Article  CAS  Google Scholar 

  • Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant growth and physiology under heterogeneous salinity. Plant Soil 354:1–19

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Dong Y, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Foyer CH (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  Google Scholar 

  • Diaz-Vivancos P, Wolff T, Markovic J, Pallardo FV, and Foyer CH (2011a) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178

    Article  Google Scholar 

  • Fernandez-García N, Martí MC, Jimenez A, Sevilla F, Olmos E (2009) Subcellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate. J Plant Physiol 166:2004–2012

    Article  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Ziogas V, Tanou G, Molassiotis A (2010) Involvement of AsA/DHA and GSH/GSSG in gene and protein expression and in the activation of defense mechanisms under abiotic stress conditions. In: Anjum NA, Chan MS, Umar S (eds) Ascorbateglutathione pathway and stress tolerance in plants. Springer, pp 265–300.

  • Gill SS, Anjum Na, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Noctor G, Knight MR, Foyer CH (2004) Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Green RM, Graham M, O’Donovan MR, Chipman JK, Hodges, N.J. (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21:383–390

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102: 662–673

    Article  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed Central  PubMed  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC 13:104

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Ithayaraja CM (2011) Mini-Review: Metabolic functions and molecular structure of glutathione reductase. Int J Pharm Sci Rev Res 9: Article-017

  • Jimenez A, Hernandez Ja., Del Rio La., Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karuppanapandian T, Moon J, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. AJCS 5: 709–725

    CAS  Google Scholar 

  • Király L, Künstler A, Höller K, Fattinger M, Juhász C, Müller M, Gullner G, Zechmann B (2012) Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response. Plant Physiol Biochem 59:44–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Koffler BE, Maier R, Zechmann B (2011) Subcellular distribution of glutathione precursors in Arabidopsis thaliana. J Integr Plant Biol 53:930–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot Bot 56:921–933

    Article  CAS  Google Scholar 

  • Liang G, Du G, Chen J (2009) Salt-induced osmotic stress for glutathione overproduction in Candida utilis. Enzyme Microb Technol 45: 324–329

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell Environ 26: 845–856

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MS, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, pp 91–113.

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2006) Identification of PAD2 as a y-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  CAS  PubMed  Google Scholar 

  • Simon UK, Polanschütz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H2O2 distribution during Botrytis cinerea infection in Arabidopsis. PLoS One 8:e65811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajòáková J, Patui S, Braidot E, Macrì F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252

    Article  CAS  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59: 4017–4027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zechmann B, Müller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246:15–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zechmann B. (2011) Subcellular distribution of ascorbate in plants. Plant Signal Behav 6:360–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J (2007) Plant Salt Stress. Encycl Life Sci:1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Zechmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koffler, B.E., Luschin-Ebengreuth, N. & Zechmann, B. Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress. J. Plant Biol. 58, 8–16 (2015). https://doi.org/10.1007/s12374-014-0264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0264-1

Keywords

Navigation