Skip to main content
Log in

Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In order to understand the stress-responsive mechanism controlling OsDhn1 gene, promoter analysis of OsDhn1 gene was conducted. First, a 1.5 kb-long promoter region of OsDhn1 was isolated and characterized by β-glucuronidase (GUS) analysis. GUS assay of OsDhn1::gus plants showed that the GUS activity in the leaves was induced by drought stress but not by wound, cold, salt, or ABA treatment. Second, transactivation assay revealed that OsDhn1 promoter is activated by OsDREB1A or OsDREB1D as well as CBF1 but not by OsDREB1B or OsDREB1C. Taken together, these suggest that the drought-inducible OsDhn1 gene is regulated by abiotic stress signaling pathway involving CBF/DREB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chen DH, Roland PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Dai Z, Gao J, An K, Lee JM, Edwards GE, An G (1996) Promoter element controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34. Plant Mol Biol 32:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart É, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerance gramineae species. FEBS Lett 344:20–24

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (1993) Structural motif in Lea proteins, In TJ Close, EA Bray, eds, Plant response to cellular dehydration during environmental stress. Current topics in plant physiology, Vol. 10. American Society of Plant Physiologists, Rockville, MD, pp 91–103

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna ST (1994) Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol Biol 24:805–810

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:277–403

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in coldresponsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee S, Kang HG, Jeon JS, Kim KM, An G (2003) A complete sequence of the pGA1611 binary vector. J Plant Biol 46: 211–214

    Article  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Aguan K, Abe M, Sugawara K (1992) Nucleotide sequence of a rice rab16 homologue gene. Plant Mol Biol 18:127–129

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Shimamoto K (1991) Transformation and regeneration of rice protoplasts. In K Lindsey, ed, Plant Tissue Culture Manual B1, Kluwer Academic Publisher, pp 1–16

    Google Scholar 

  • Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18:107–114

    PubMed  CAS  Google Scholar 

  • Lee SC, Jeon JS, Jung KH, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310–316

    Article  CAS  Google Scholar 

  • Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of a stress-inducible dehydrin gene, OsDhn1, from rice (Oryza sativa L.). Mol Cells 19:212–218

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid upregulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MV, Mäkela P, Svenson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14: Suppl. S165–183

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ryong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SC., Kim, SH. & Kim, SR. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J. Plant Biol. 56, 115–121 (2013). https://doi.org/10.1007/s12374-012-0377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-012-0377-3

Keywords

Navigation